• Title/Summary/Keyword: error propagation

Search Result 1,011, Processing Time 0.023 seconds

Study on the Load Frequency of 2-Area Power System Using Neural Network Controller (신경회로망 제어기을 이용한 2지역 전력계통의 부하주파수제어에 관한 연구)

  • Chong, H.H.;Lee, J.T.;Kim, S.H.;Joo, S.M.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.768-770
    • /
    • 1996
  • This paper propose neural network which is one of self-organizing techniques. It is composed neural network controller as input signal is error and change of error which is optimal output, and is learned system by using a error back-propagation learning algorithm is one of error mimizing learning methods. In order to achieve practical real time control reduce on learning time, it is applied to load-frequency control of nonlinear power system with using a moment learning method. It is described in such a case considering constraints for a rate of increace generation-rate.

  • PDF

Evaluation for Applications of the Levenberg-Marquardt Algorithm in Geotechnical Engineering (Levenberg-Marquardt 알고리즘의 지반공학 적용성 평가)

  • Kim, Youngsu;Kim, Daeman
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.5
    • /
    • pp.49-57
    • /
    • 2009
  • In this study, one of the complicated geotechnical problem, compression index was predicted by a artificial neural network method of Levenberg-Marquardt (LM) algorithm. Predicted values were compared and evaluated by the results of the Back Propagation (BP) method, which is used extensively in geotechnical engineering. Also two different results were compared with experimental values estimated by verified experimental methods in order to evaluate the accuracy of each method. The results from experimental method generally showed higher error than the results of both artificial neural network method. The predicted compression index by LM algorithm showed better comprehensive results than BP algorithm in terms of convergence, but accuracy was similar each other.

  • PDF

Realization for FF-PID Controlling System with Backward Propagation Algorithm (역전파 알고리즘을 이용한 FF-PID 제어 시스템 구현)

  • Ryu, Jae-Hoon;Hur, Chang-Wu;Ryu, Kwang-Ryol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.171-174
    • /
    • 2007
  • A realization for FF-PID(Feed-Forward PID) controlling system with backward propagation algorithm and image pattern recognition is presented in this paper. The pattern recognition used backward propagation of nervous network is teaming. FF-PID is enhanced the response characteristic of moving image by using the controlling value which is output error for the target value of nervous system. In conclusion of experiment, the system is shown that the response is worked as 2.7sec that is enhanced round 15% in comparison with general difference image algorithm. The system is able to control a moving object with effect.

  • PDF

On the set up to the Number of Hidden Node of Adaptive Back Propagation Neural Network (적응 역전파 신경회로망의 은닉 층 노드 수 설정에 관한 연구)

  • Hong, Bong-Wha
    • The Journal of Information Technology
    • /
    • v.5 no.2
    • /
    • pp.55-67
    • /
    • 2002
  • This paper presents an adaptive back propagation algorithm that update the learning parameter by the generated error, adaptively and varies the number of hidden layer node. This algorithm is expected to escaping from the local minimum and make the best environment for convergence to be change the number of hidden layer node. On the simulation tested this algorithm on two learning pattern. One was exclusive-OR learning and the other was $7{\times}5$ dot alphabetic font learning. In both examples, the probability of becoming trapped in local minimum was reduce. Furthermore, in alphabetic font learning, the neural network enhanced to learning efficient about 41.56%~58.28% for the conventional back propagation. and HNAD(Hidden Node Adding and Deleting) algorithm.

  • PDF

On the enhancement of the learning efficiency of the adaptive back propagation neural network using the generating and adding the hidden layer node (은닉층 노드의 생성추가를 이용한 적응 역전파 신경회로망의 학습능률 향상에 관한 연구)

  • Kim, Eun-Won;Hong, Bong-Wha
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.2
    • /
    • pp.66-75
    • /
    • 2002
  • This paper presents an adaptive back propagation algorithm that its able to enhancement for the learning efficiency with updating the learning parameter and varies the number of hidden layer node by the generated error, adaptively. This algorithm is expected to escaping from the local minimum and make the best environment for the convergence of the back propagation neural network. On the simulation tested this algorithm on three learning pattern. One was exclusive-OR learning and the another was 3-parity problem and 7${\times}$5 dot alphabetic font learning. In result that the probability of becoming trapped in local minimum was reduce. Furthermore, the neural network enhanced to learning efficient about 17.6%~64.7% for the existed back propagation. 

Movie recommendation system using community detection based on label propagation (레이블 전파에 기반한 커뮤니티 탐지를 이용한 영화추천시스템)

  • Xinchang, Khamphaphone;Vilakone, Phonexay;Lee, Han-Hyung;Song, Min-Hyuk;Park, Doo-Soon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.05a
    • /
    • pp.273-276
    • /
    • 2019
  • There is a lot of information in our world, quick access to the most accurate information or finding the information we need is more difficult and complicated. The recommendation system has become important for users to quickly find the product according to user's preference. A social recommendation system using community detection based on label propagation is proposed. In this paper, we applied community detection based on label propagation and collaborative filtering in the movie recommendation system. We implement with MovieLens dataset, the users will be clustering to the community by using label propagation algorithm, Our proposed algorithm will be recommended movie with finding the most similar community to the new user according to the personal propensity of users. Mean Absolute Error (MAE) is used to shown efficient of our proposed method.

Raptor FEC Based Channel-Adaptive Video Transmission Scheme over WiBro Network (와이브로 환경에서 랩터 FEC 기반의 채널 적응형 비디오 전송 기법)

  • Kim, Hye-Soo;Jeong, Jae-Yun;Byun, Keun-Yung;Nam, Hyeong-Min;Ko, Sung-Jea
    • Journal of IKEEE
    • /
    • v.13 no.4
    • /
    • pp.29-36
    • /
    • 2009
  • The packet loss and the disconnection during handoff are the most critical problems which degrade the video quality in wireless video streaming. To cope with these problems, we propose an efficient video streaming method in this paper, which does not only dynamically adjust the video transmission rate based on the raptor forward error correction (FEC) level, but also minimize the error propagation during handoff. Firstly, the channel bandwidth of the wireless broadband internet, called WiBro, is estimated by analyzing channel parameters including the carrier to interference and noise ratio (CINR) and the handoff. Secondly, the streaming server adjusts the next transmission rate according to the estimated channel bandwidth and the raptor FEC level to avoid packet error. Also, the encoder performs the intra refresh method that inserts an intra frame (I-frame) right after handoff to reduce the error propagation effectively. Experimental results indicate that the proposed method can improve the performance of the video streaming over WiBro network.

  • PDF

Optimal Grayscale Morphological Filters Under the LMS Criterion (LMS 알고리즘을 이용한 형태학 필터의 최적화 방안에 관한 연구)

  • 이경훈;고성제
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.6
    • /
    • pp.1095-1106
    • /
    • 1994
  • This paper presents a method for determining optimal grayscale function processing(FP) morphological filters under the least square (LMS) error criterion. The optimal erosion and dilation filters with a grayscale structuring element(GSE) are determined by minimizing the mean square error (MSE) between the desired signal and the filter output. It is shown that convergence of the erosion and dilation filters can be achieved by a proper choice of the step size parameter of the LMS algorithm. In an attempt to determine optimal closing and opening filters, a matrix representation of both opening and closing with a basis matrix is proposed. With this representation, opening and closing are accomplished by a local matrix operation rather than cascade operations. The LMS and back-propagation algorithm are utilzed for obtaining the optimal basis matrix for closing and opening. Some results of optimal morphological filters applied to 2-D images are presented.

  • PDF

Implementation of Self-adaptive System using the Algorithm of Neural Network Learning Gain

  • Lee, Seong-Su;Kim, Yong-Wook;Oh, Hun;Park, Wal-Seo
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.3
    • /
    • pp.453-459
    • /
    • 2008
  • The neural network is currently being used throughout numerous control system fields. However, it is not easy to obtain an input-output pattern when the neural network is used for the system of a single feedback controller and it is difficult to obtain satisfactory performance with when the load changes rapidly or disturbance is applied. To resolve these problems, this paper proposes a new mode to implement a neural network controller by installing a real object for control and an algorithm for this, which can replace the existing method of implementing a neural network controller by utilizing activation function at the output node. The real plant object for controlling of this mode implements a simple neural network controller replacing the activation function and provides the error back propagation path to calculate the error at the output node. As the controller is designed using a simple structure neural network, the input-output pattern problem is solved naturally and real-time learning becomes possible through the general error back propagation algorithm. The new algorithm applied neural network controller gives excellent performance for initial and tracking response and shows a robust performance for rapid load change and disturbance, in which the permissible error surpasses the range border. The effect of the proposed control algorithm was verified in a test that controlled the speed of a motor equipped with a high speed computing capable DSP on which the proposed algorithm was loaded.

An Adaptive FEC Algorithm for Mobile Wireless Networks (이동 무선 네트워크의 전송 성능 향상을 위한 적응적 FEC 알고리즘)

  • Ahn, Jong-Suk;John Heidmann
    • The KIPS Transactions:PartC
    • /
    • v.9C no.4
    • /
    • pp.563-572
    • /
    • 2002
  • Wireless mobile networks tend to drop a large portion of packets due to propagation errors rather than congestion. To Improve reliability over noisy wireless channels, wireless networks can employ forward error correction (FEC) techniques. Static FEC algorithms, however, can degrade the performance by poorly matching their overhead to the degree of the underlying channel error, especially when the channel path loss rate fluctuates widely. This paper investigates the benefits of an adaptable FEC mechanism for wireless networks with severe packet loss by analytical analysis or measurements over a real wireless network called sensor network. We show that our adaptive FEC named FECA (FEC-level Adaptation) technique improves the performance by dynamically tuning FEC strength to the current amount of wireless channel loss. We quantify these benefits through a hybrid simulation integrating packet-level simulation with bit-level details and validate that FECA keeps selecting the appropriate FEC-level for a constantly changing wireless channel.