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Implementation of Self-adaptive System using the Algorithm
of Neural Network Learning Gain

Seong-Su Lee, Yong-Wook Kim, Hun Oh, and Wal-Seo Park

Abstract: The neural network is currently being used throughout numerous control system fields.

However, it is not easy to obtain an input-output pattern when the neural network is used for the
system of a single feedback controller and it is difficult to obtain satisfactory performance with
when the load changes rapidly or disturbance is applied. To resolve these problems, this paper
proposes a new mode to implement a neural network controller by installing a real object for
control and an algorithm for this, which can replace the existing method of implementing a
neural network controller by utilizing activation function at the output node. The real plant object
for controlling of this mode implements a simple neural network controller replacing the
activation function and provides the error back propagation path to calculate the error at the
output node. As the controller is designed using a simple structure neural network, the input-
output pattern problem is solved naturally and real-time learning becomes possible through the
general error back propagation algorithm. The new algorithm applied neural network controller
gives excellent performance for initial and tracking response and shows a robust performance for
rapid load change and disturbance, in which the permissible error surpasses the range border. The
effect of the proposed control algorithm was verified in a test that controlled the speed of a motor

equipped with a high speed computing capable DSP on which the proposed algorithm was loaded.
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1. INTRODUCTION

Up to recent times, servo-motors and induction
motors were chietly controlled by PID (proportional
integral derivation) controllers for the speed change of
acceleration and deceleration on industrial spots. This
was because PID controllers are simple in structure
and have good transient response characteristics, and
furthermore they can easily remove normal state error
[1,2].

However, the controlling performance of PID
controllers are sensitive to the variation of system
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parameters and the robustness is low as the PID
controllers do not have the capability of fast transient
response to load disturbance. Accordingly the
parameters of PID controllers should be determined
again to maintain control characteristics when system
characteristics vary [3].

For determining PID parameters, significant time
and efforts are consumed even when necessary
professional knowledge is equipped. Even till now,
many on-going studies for obtaining parameters are
taking place. |

Most recently, neural network technology by which
a controller can adapt to control environment variation,
even when the information related to the main system
does not exist, is being applied to the control field
[4,5].

The neural network is being applied to various
control system fields. The research to utilize an
emulator to embody a single mode feedback neural
network controller is currently being processed.
However, this method has the disadvantage that it
must undergo a great deal of computing given the fact
that it requires a subsidiary emulator [6].

In this paper, a neural network controller by which
feedback control gain is determined automatically to
fit objective system characteristics even without using
an emulator, is proposed. The method of the proposed
system has the function to acquire the information on
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objective system through self-learning and adapt to
the characteristics of the main system, just as in the
case of the PID controller, but it will also have the
function to automatically determine the parameters
which fit to the objective system and be synchronized
to it even when load changes rapidly or disturbance is
approved.

Hence the proposed controller would be able to
enhance an automation facility’s work, if opted as the
controller replacing the PID controller, which is being
used widely on industrial spots. The performance of
the proposed neural network self-adaptive system was
verified in the speed experiment of a A.C. servo-motor
and a 3 phase induction motor.

2. SELF-ADAPTIVE SYSTEM

2.1. Neural network

Neural network technology imitates biological
brain function of the neural network that has the
capability to acquire, store, and utilize knowledge by
learning. Delta Learning Rule, which can minimize
error by using the function of conceiving and
optimizing among neural network technology, is
chiefly exploited in control fields while various
functions including filtering, converting, assorting,
conceiving, and optimizing can be executed by the
neural network.

The block diagram of a single unit neural network
can be illustrated like Fig. 1.

Learning signal (r) can be defined as below.

r=[d;~ f W X)] f (W} X) (1)

Here, W indicates weight value vector and X
indicates input vector.

W=[Wyi, Wiy - W]

)

X=[X, X, - X,]'

Superscript 7 signifies transpose and net sign which
is used in the diagram, and has the same value as

w'x.
Delta Learning Rule can be acquired by the
condition in which the square error of the difference
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Fig. 1. Delta learning block diagram.
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Fig. 2. Neural network control system.

between standard value (d;) and output value (O;)

is minimized. Error square vector (E) can be defined
as below.

E= —;—(d;- 0, = %[df W X )PP )

Error gradient vector (VE) for weight value
(W;) is as follows.

OF o
VE= == (d-0)f X)X (3)

A formula having the relation like below can be
drawn because weight value should change into
negative gradient direction in order to minimize error.

AW, =—cAE =c(d, - 0,)f W/ X)X (4)

c is a positive constant and weight value is adjusted as
below.

Delta Learning Rule is ordinarily exploited in the
extension of more than 3 layers, which can recognize
even very complex realms. Generally, Delta Learning
Rule is composed of the structures similar to those
shown below for being embodied into a control
system.

Fig. 2 expresses a block diagram of a neural
network system which has an emulator.

A control system which has a neural network
emulator in its structure is not appropriate for real
time controlling because it requires much computing
of round numbers and hence much time.

2.2. Neural network learning gain self adaptive system

A neural network controller uses an emulator
because it needs a supervised input-output pattern.

For a neural network controller, computing round
times increase due to the opting of an emulator and
difficulties occur in real time controlling.

In this paper a method to install a plant on the last
output node of a neural network controller is
introduced and the method to improve the response
characteristic of a neural network controller by adding
a supplementary control input to the main control
input () is suggested.
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Fig. 3. Block diagram of control system with the
algorithm for self-adaptive learning gain.

The illustrated block diagram of the last output
node in case of a multi-layer structure system is
indicated Fig. 3.

In Fig. 3, sign ¥ and F mean input signal and

learning signal each and P (ner,) signifies the

differential value of the last output node.

As shown in Fig. 3, the instruction input-output
pattern problem of a neural network can be solved
naturally by substituting a plant instead of an
activation function on the output node.

Control input (#) to which supplementary control
input 1s added in order to improve the response

characteristic of the control system is like that shown
in Formula (6).

2
d —O
u:netk—FZ[ ld I] (6)

i

The proposed algorithm in this paper has the merit
that an operator can execute control even though he
may be a person without knowledge pertaining to
system features because the algorithm allows the
system to perform control using the information on
error rate and error variation rate. The proposed
algorithm also has the merit that it enables a system
that an unskilled worker can operate as well as a
skilled worker.

The proposed algorithm can be conveniently
utilized for a real time controller because the gains by
learning performance, which fit to the system, begin
to be accumulated simultaneously with the onset of
learning and learning is terminated when gains reach
the primitively set value.

3. EXPERIMENT AND RESULT
CONSIDERATION

3.1. System composition

The parameters of the A.C. servo-motor (Model :
LG-OTIS FMA-CB02-AB00) used for the experiment
in this paper are like those in Table 1. LS-OTIS FDA-
5002 was used as the A.C. servo-driver and the load,
which 1s in the shape of a disc of weight, was
connected to the motor rotation axis by a belt.
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Table 1. Parameters of A.C. servo motor.
[tem Data [tem Data
Rated Voltage [V] | 220 [Rated Rotation [rpm]|3,000
Unloaded Rated
Current [A] 1.80| Frequency [Hz] 60
Rated Capacity {W]{ 200 Pole [P] 4

Table 2. Parameters of 3-phase induction motor.

Item Data [tem Data
Rated Voltage [V] | 220 |Rated Rotation [rpm]{1,710
Unloaded Rated
Current [A] 1.80| Frequency [Hz] 60
Rated Capacity [W]| 400 Pole [P] 4
Sl B ~(1D
1 '
DAC :
12 [bit] :

!

DSP{TMS320C32) ADC
Monitor  § Neural Network  J—— [hit]
Algorithm

Fig. 4. Composition of system.

The parameters of the 3 phase induction motor
(Model : KMI-400K1, LG OTIS Totally Enclosed Out
-Panned Type, Insulation: I[P44) are indicated in Table 2.

An IGBT type PWM control mode inverter (LS-
OTIS SV015iG5-2U) was used as the inverter to
control the induction motor and the disc shaped load
of weight was used being connected to the motor
rotation axis.

DSP (TMS 320C32) was used as the processor to
control the motor in real time and the entire system
composition including 12Bit 4096 resolution A/D
converter, D/A inverter, and Tacho-generator is like
that indicated in Fig. 4.

Table 3. Parameters of system.

Servo- |Induction
Item
motor motor
Proportional Gain 4.39 3.60
PID Integrated Gain 0.28 0.80
Differential Gain 0.07 0.20
Learning Constant | 0.389 0.297
Neural Teaching Signal 1500 850
Network | Neuron Constant 1.0 1.0
Activation Function u.mpol.ar thip 01?1 '
sigmoid | sigmoid
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The parameters of the PID control system and the
neural network control system are presented in Table 3.

PID control gain is decided through unit step
response method.

The neural network control system opted for the
single input mode in which 1 node on layer 1 and 4
nodes on layer 2 exist, and used the A.C. servo-motor
and 3 phase induction motor instead of an activation
function for the output layer which is made of a single
node.

3.2. Paper experiment and result consideration for
A.C. servo motor

Fig. 5 expresses the initial response curve of a PID

system and a neural network system of an A.C. servo-

motor.

Fig. 5(a) is the response curve of the PID control
system. A indicates control input and B indicates the
response curve. The response curve B reached the
primitively set value after 680ms from initiation. Fig.
5(b) is the response curve of a neural network self
adaptive system. It shows the process that the system
is adapting to the primitively set value autonomously.
A indicates control input and B indicates the response

curve. The response curve B reached to the
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(a) PID control system.
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(b) Neural network self-adaptive system.

Fig. 5. Initial period control response curve of control
system.

primitively set value after 600ms from initiation. Here
it is found that the neural network self adaptive
system reaches 80ms faster than the PID system.

Fig. 6 illustrates the pursuit response curve of the
system when the primitive set value changes from
2400rpm to 1200rpm after 5000ms from start while
driving. Fig. 6(a) expresses the response curve of the
PID control system. A is control input and B is the
response curve. It takes 1700ms to reach the primitive
set value of 2400rpm. The time to reach to the
primitive set value was 1200ms when the control
input was changed into 1200rpm, and some speed
reduction vibration occurred.

Fig. 6(b) is the response curve of the neural
network control system. A is the control input and B is
the response curve. The neural network control system
shows excellent performance compared to the PID
control system as it reached to the primitively set
value 2400rpm rapidly, taking only 900ms after
starting.

Though a little speed reduction vibration occurred
when the set value was changed into 1200rpm, the
neural system converged to the desirable track 500ms
faster than the PID control system as it reached to the
set value after 700ms from initiation.

Tek FIissH 100 S.r’st_
E

(a) PID control system.

Tek IR 100 S5/
E

(b) Neural network self-adaptive system.

Fig. 6. Speed tracking response curve of control
system.
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(b) Neural network self-adaptive system.

Fig. 7. Disturbance response curve of control system.

Fig. 7 expresses the response curve of the system
when external load disturbance is approved to the
control system. For disturbance, the speed of 750rpm,
which is 50% of the primitive set value, was approved
to be reduced, using a disc load of 1lkg and step
mode speed reduction disturbance was continually
approved to the system for 2500ms.

Fig. 7(a) shows the disturbance response curve of
the PID controller system. A is the control input to
remove disturbance and B is the output curve which
expresses the motor rotation number in the influence
of the disturbance. When disturbance was approved
on the system in normal condition, the largest
divergence was 480rpm and the continual divergence
time was 1200ms.

Fig. 7(b) indicates the response curve of the neural
network controller system in the influence of
disturbance. A is the control input to remove
disturbance and B is the output curve which expresses
the motor rotation number in the influence of
disturbance. When disturbance was approved on the
system, the rotation speed was reduced as the largest
divergence became 300rpm deviating for 800ms from
the primitively set value by the influence of
disturbance. However, the system performance

displayed excellence as it removed the influence of
disturbance 400ms faster than the PID controller
system.

3.3. Experiment and result consideration for

induction motor

Fig. 8 shows the initial period response curve of the
PID system and the neural network system in a 3
phase induction motor.

Fig. 8(a) expresses the response curve of the PID
controller. A is control input and B is the response
curve which shows that the system reaches the
primitively set value after 1700ms from the start. Fig.
8(b) expresses the response curve of the neural
network control system, which shows that the system
is adapting to the primitively set value autonomously
by self-learning. A is control input and B is the
response curve which shows that the system reaches
the primitively set value 400ms faster than the PID
controller system, achieving the value after 1300ms
from initiation.

Fig. 9 expresses the pursuit response curve of the
system when the set value was changed to 680rpm
after the system had been driven in the primitive set

Tek 100 S/s
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(b) Neural network self-adaptive system.

Fig. 8. Initial period control response curve of control
system.
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(a) PID control system.
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(b) Neural network self-adaptive system.

Fig. 9. Speed tracking response curve of control
system.

value of 1360rpm for 5000ms initially.

Fig. 9(a) expresses the pursuit response curve of the
PID control system. A is control input and B is the
response curve. It takes 3000ms to reach the
primitively set value of 1360rpm.

When the set value was changed to 680rpm, it takes
2200ms to reach the set value and some speed
reduction vibration occurred.

Fig. 9(b) expresses the response curve of the neural
network control system. A is control input and B is the
response curve. The system converged to the aiming
value 1000ms faster than the PID controller system as
it takes 2000ms to reach the primitive set value of
1360rpm. It 1s found that the neural network control
system converges to the primitively set value faster
than the PID control system when the set value is
changed to 680rpm, taking 1400ms even without the
vibration as in the PID control system.

Fig. 10 shows the response curve when disturbance
is approved on the control system. For disturbance,
the speed of the system was enabled to be reduced by
425rpm which is 50% of the primitively set value and
the speed reduction disturbance in step mode was
being approved continually for 5000ms on the system.
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(b) Neural network self-adaptive system.

Fig. 10. Disturbance response curve of control system.

Fig. 10(a) is the response curve when disturbance is
approved on the PID control system. A is the control
input to remove disturbance and B is the output
response curve of motor rotation number of which the
largest divergence is 272rpm and the divergence
continuing time is 4000ms.

Fig. 10(b) expresses the response curve of the
neural network control system in the influence of
disturbance. A is the control input to remove
disturbance and B is the output response curve in the
influence of disturbance, which shows that the speed
was reduced as the largest divergence is 260rpm and
the time of divergence from the primitively set value
is 1800ms at the time of disturbance approval.

However the neural network control system
demonstrated excellent performance removing
disturbance 2200ms faster than the PID controller
system.

4. CONCLUSIONS

In this paper, a neural network control system is
proposed that can adapt to the objective system on it’s
own by self-learning even without the previous
information concerning the objective system so that it
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can be used in feedback control systems, by
improving the current problematic point of PID
control systems and neural network control systems.

The proposed system enables real time control
execution as it can perform high speed computing
because it has no emulator to acquire input-output
pattern and hence, the structure is made simple. The
proposed system also showed the characteristic to
adapt to the situation by self-learning in real time even
when the property of an objective system varied
intermittently or continually, or disturbance occurred.

It 1s found that one on which the algorithm can
adapt to the objective system autonomously by
learning gain of a neural network for a servo-control
system in which A.C. servo-motor or 3 phase
induction motor is exploited, is superior to a PID
control system in the feature of initial response,
pursuit response, and disturbance removal.

The proposed system can overwhelm the
disadvantage of a PID control system that needs
professional knowledge as well as much time and
effort to determine parameters, as the learning gain of
a neural network is determined automatically in the
proceeding of system driving in the proposed system.
The proposed control technique would be utilized
usefully for various automation facilities due to such
an advantage.
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