• Title/Summary/Keyword: elliptic regularity

Search Result 24, Processing Time 0.021 seconds

GLOBAL REGULARITY OF SOLUTIONS TO QUASILINEAR CONORMAL DERIVATIVE PROBLEM WITH CONTROLLED GROWTH

  • Kim, Do-Yoon
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.6
    • /
    • pp.1273-1299
    • /
    • 2012
  • We prove the global regularity of weak solutions to a conormal derivative boundary value problem for quasilinear elliptic equations in divergence form on Lipschitz domains under the controlled growth conditions on the low order terms. The leading coefficients are in the class of BMO functions with small mean oscillations.

THE BOUNDARY HARNACK PRINCIPLE IN HÖLDER DOMAINS WITH A STRONG REGULARITY

  • Kim, Hyejin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1741-1751
    • /
    • 2016
  • We prove the boundary Harnack principle and the Carleson type estimate for ratios of solutions u/v of non-divergence second order elliptic equations $Lu=a_{ij}D_{ij}+b_iD_iu=0$ in a bounded domain ${\Omega}{\subset}R_n$. We assume that $b_i{\in}L^n({\Omega})$ and ${\Omega}$ is a $H{\ddot{o}}lder$ domain of order ${\alpha}{\in}$ (0, 1) satisfying a strong regularity condition.

REGULARITY OF NONLINEAR VECTOR VALUED VARIATIONAL INEQUALITIES

  • Kim, Do-Wan
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.4
    • /
    • pp.565-577
    • /
    • 2000
  • We consider regularity questions arising in the degenerate elliptic vector valued variational inequalities -div(|▽u|p-2∇u)$\geq$b(x, u, ∇u) with p$\in$(1, $\infty$). It is a generalization of the scalar valued inequalities, i.e., the obstacle problem. We obtain the C1,$\alpha$loc regularity for the solution u under a controllable growth condition of b(x, u, ∇u).

  • PDF

ON NONLINEAR ELLIPTIC EQUATIONS WITH SINGULAR LOWER ORDER TERM

  • Marah, Amine;Redwane, Hicham
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.2
    • /
    • pp.385-401
    • /
    • 2021
  • We prove existence and regularity results of solutions for a class of nonlinear singular elliptic problems like $$\{-div\((a(x)+{\mid}u{\mid}^q){\nabla}u\)=\frac{f}{{\mid}u{\mid}^{\gamma}}{\text{ in }}{\Omega},\\{u=0\;on\;{\partial}{\Omega},$$ where Ω is a bounded open subset of ℝℕ(N ≥ 2), a(x) is a measurable nonnegative function, q, �� > 0 and the source f is a nonnegative (not identicaly zero) function belonging to Lm(Ω) for some m ≥ 1. Our results will depend on the summability of f and on the values of q, �� > 0.

Reduction factor of multigrid iterations for elliptic problems

  • Kwak, Do-Y.
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.7-15
    • /
    • 1995
  • Multigrid method has been used widely to solve elliptic problems because of its applicability to many class of problems and fast convergence ([1], [3], [9], [10], [11], [12]). The estimate of convergence rate of multigrid is one of the main objectives of the multigrid analysis ([1], [2], [5], [6], [7], [8]). In many problems, the convergence rate depends on the regularity of the solutions([5], [6], [8]). In this paper, we present an improved estimate of reduction factor of multigrid iteration based on the proof in [6].

  • PDF

GRADIENT TYPE ESTIMATES FOR LINEAR ELLIPTIC SYSTEMS FROM COMPOSITE MATERIALS

  • Youchan Kim;Pilsoo Shin
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.3
    • /
    • pp.635-682
    • /
    • 2023
  • In this paper, we consider linear elliptic systems from composite materials where the coefficients depend on the shape and might have the discontinuity between the subregions. We derive a function which is related to the gradient of the weak solutions and which is not only locally piecewise Hölder continuous but locally Hölder continuous. The gradient of the weak solutions can be estimated by this derived function and we also prove the local piecewise gradient Hölder continuity which was obtained by the previous results.

Regularity of solutions to Helmholtz-type problems with absorbing boundary conditions in nonsmooth domains

  • Kim, Jinsoo;Dongwoo Sheen
    • Bulletin of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.135-146
    • /
    • 1997
  • For the numerical simulation of wave phenomena either in unbounded domains that it is not feasible to compute solutions on the entire region, it is needed to truncate the original domains to manageable bounded domains whose geometries are simple but usually nonsmooth. On the artificial boundaries thus created, absorbing boundary conditions are taken so that the significant part of waves arriving at the artificial boundaries can be transmitted [5,10,11,16,17,26]$.

  • PDF

ELLIPTIC OBSTACLE PROBLEMS WITH MEASURABLE NONLINEARITIES IN NON-SMOOTH DOMAINS

  • Kim, Youchan;Ryu, Seungjin
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.239-263
    • /
    • 2019
  • The $Calder{\acute{o}}n$-Zygmund type estimate is proved for elliptic obstacle problems in bounded non-smooth domains. The problems are related to divergence form nonlinear elliptic equation with measurable nonlinearities. Precisely, nonlinearity $a({\xi},x_1,x^{\prime})$ is assumed to be only measurable in one spatial variable $x_1$ and has locally small BMO semi-norm in the other spatial variables x', uniformly in ${\xi}$ variable. Regarding non-smooth domains, we assume that the boundaries are locally flat in the sense of Reifenberg. We also investigate global regularity in the settings of weighted Orlicz spaces for the weak solutions to the problems considered here.

GEVREY REGULARITY AND TIME DECAY OF THE FRACTIONAL DEBYE-HÜCKEL SYSTEM IN FOURIER-BESOV SPACES

  • Cui, Yiwen;Xiao, Weiliang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1393-1408
    • /
    • 2020
  • In this paper we mainly study existence and regularity of mild solutions to the parabolic-elliptic system of drift-diffusion type with small initial data in Fourier-Besov spaces. To be more detailed, we will explain that global-in-time mild solutions are well-posed and Gevrey regular by means of multilinear singular integrals and Fourier localization argument. Furthermore, we can get time decay rate estimate of mild solutions in Fourier-Besov spaces.