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REGULARITY OF SOLUTIONS TO
HELMHOLTZ-TYPE PROBLEMS WITH
ABSORBING BOUNDARY CONDITIONS IN
NONSMOOTH DOMAINS

JINSOO KIM AND DONGWOO SHEEN

1. Introduction

For the numerical simulation of wave phenomena either in unbounded
domains or in so large domains that it is not feasible to compute solu-
tions on the entire region, it is needed to truncate the original domains to
manageable bounded domains whose geometries are simple but usually
nonsmooth. On the artificial boundaries thus created, absorbing bound-
ary conditions are taken so that the significant part of waves arriving at
the artificial boundaries can be transmitted [5, 10, 11, 16, 17, 26].

In order to solve initial boundary value problems numerically, usual
numerical methods require the problems for the previous time steps to
be solved before going into the next time step. Instead of solving initial
boundary value problems in the time domain, we solve in the frequency
domain elliptic problems which are Fourier transforms of original time—
dependent problems with respect to time and then obtain the solution
in the time domain by the Fourier’s inversion formula [8, 9]. We note
that the Fourier transformation of wave problem with respect to time
generates a family of Helmholtz—type problems which, when subject to
absorbing boundary conditions, are uniquely solvable elliptic problems
for each nonzero frequency and can be solved simultaneously for all fre-
quencies.
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In this approach, regularity of the solutions in the frequency domain
plays an important role in error analysis as most of the error estimates for
the numerical solution to elliptic boundary value problem rely on the shift
theorem which is the main feature of elliptic boundary value problems
in smooth domains [4, 7, 21]. It is important to extend the results for
smooth domains to the corresponding ones for nonsmooth domains which
are usually Lipschitz domains [6, 15, 25]. Indeed, under the assumption of
H?()-regularity of the solutions in the frequency domain, we obtained
the error estimates of optimal order in the time domain (12].

In this paper, we prove the shift theorem for Helmbholtz-type equations
with Robin boundary conditions in bounded convex domains whose co-
efficients are complex-valued functions. In the proof, we approximate
the nonsmooth domain by a sequence of domains with C%-boundaries
and use a priori estimates which are independent of the domains and of
the boundary conditions [19]. The existence and the uniqueness of the
solution are also given.

2. Preliminaries and Notations

Let {2 be a bounded domain in R™ which is an artificial truncation of
the original medium and set J = (0,00). Consider the time-dependent
wave equation:

1
c(x)zutl — Au = f(z,t), (z,8) € QA x J, (2.1a)
1
@ut +u, =0, (.T, t) el x J, (21b)
Ult=0 = Utfe—o = 0, z € Q, (2.1¢)

where the coefficient ¢ € C!(€2) denotes the wave speed and v the out-
ward unit normal vector on the boundary I' = Q. The boundary condi-
tion (2.1b) is a standard first—order absorbing boundary condition which
makes the artificial boundary T transparent to normally outgoing waves
so that the significant parts of waves arriving normally at the boundary
is completely absorbed [5, 10, 11, 16].
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We reformulate the space-time formulation of the wave equation in the
space—frequency domain by taking the Fourier transformation of (2.1a)-
(2.1b). The problem becomes to solve a family of elliptic problems for
(-, w), the Fourier transform of u(-,t) with respect to ¢, which is defined
as usual by

iz, w) = /oo u(z,t)e ™" dt.

Since u(z,t) is a real-valued function, its Fourier transform satisfies the
conjugation relation

i(z, —w) = t(z,w), (2.2)

for all w € R. The Fourier’s inversion formula recovers u by

u(z,t) = ! /00 i(z,w)e™ dw

27 J-oo

1 0 .
== Re/ iz, w)e™ dw.
© Jo

We shall consider f and u in (2.1a)—(2.1c) to be extended to ¢ < 0 by
zero. Taking the Fourier transformation of the equations (2.1a)-(2.1b)
with respect to ¢ leads to the elliptic problems:

2

[ ~
— - Al = Q2 .
c(x)zu u= f(z,w), (z,w) € A xR, (2.3a)
X =0 (z,w) ET xR (2.3b)
C(I)u » =0, T, w . :

For the waves with attenuation, equation (2.3a)—(2.3b) should be mod-
ified in order to take into account friction. We generalize the equation
(2.3a) by including a dissipative term and deduce the corresponding ab-
sorbing boundary condition using dispersion relation 9].

w? ~
———5 U+ wb(z,w)i - Al = f(z,w), [(z,w)€ QX xR,
o(z) (2.4a)
ia(z,w)d + 4, = 0, (z,w) € x R,
(2.4Db)
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where

[N

o(z,w) = \/5(::)(35) {1 + (1 n b(z;f)"’)l}%

bz, w) b(z,w)? ) 7)) °
—t—=e14+ {1+
Z\/éc(ac) { ( w?
and b is a real nonnegative generalized friction coefficient. We assume
that b(-,w) = b(-, —w) > 0 and b(-,w) € C*() for all w € R and that

wb(-,w) — 0 asw — 0,

wb(-,w) — 0 as w — 0.

Note that since the boundary condition (2.4b) is nonlocal in both space
and time, the formulation in the time domain leads to a pseudodifferential
problem and is not useful for practical calculations.

Since the source function f(r,t) is a real-valued function, an applica-
tion of (2.2) to the equations, (2.3a)-(2.3b) and (2.4a)-(2.4b) leads to
(-, ~w) = u(-,w). Therefore, it suffices to find the solution 4(-,w) for
all w > 0, after which the solution u(-,t) in the time domain is found by
the Fourier’s inversion formula.

In the case of w = 0, the equation (2.3a)—~(2.3b) becomes a Neumann
problem and admits a solution which is unique up to an additive constant
if

/Qf(x,O)dx:/Q/Omf(x,t)dtdx:o.

The same is also true for the equation (2.4a)-(2.4b).

Let us assume that the truncated inhomogeneous medium is sur-
rounded by a homogeneous medium, that is, there exists an open subset
§2o of R™ such that © € 2 and the coefficients ¢(-) and b(-,w) are con-
stants in £\ © for all w > 0.

We concentrate on the case of w > 0 and in the next section we deal
with a general Helmholtz—type problem with Robin boundary condition.

All functions are assumed to have their values in C and standard
notations for function spaces and their norms will be used in this paper
(1, 7, 14, 15]. For a given domain D, we denote by [l - [lmp,p the norm
of the Sobolev space W™?(D). If p = 2, Wm™P(D) will be denoted by
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H™(D). By (-,-)p and (-,-)sp we denote L%-inner products in L?(D)
and L%(8D), respectively. When m = 0 or p = 2, the subscripts m or

p may be dropped. Furthermore, whenever the domain D is obviously
understood in the context, the subscript D will be omitted.

3. Regularity

Let © be a convex bounded domain in R®. Consider the problem

-Au+du=f in §, (3.1a)
Ou
o +puu=0 onT, (3.1b)

where A = A(z) is a bounded measurable complex-valued function and p
is a nonzero complex number with a nonnegative real part and a positive
imaginary part.

We assume that there exists an open subset {Jg of R™ such that 2 € Q,
in which A is a C'-continuous function with a nonnegative imaginary
part and that there exists a point p on the analytic portion of I' and a
neighborhood of p in which A is analytic.

Define a sesquilinear form A(-,-) : H}(Q) x H'(2) — C by

A(u,v) = (Vu, Vo) + (Au,v) + {(uu, v)r. (3.2)

The weak formulation of the equation (3.1a)—(3.1b) is given as follows:
Find u € H(Q) such that

Alu,v) = (f,v)  for allv € HY(Q). (3.3)

We then have the following classical results for the regular elliptic prob-
lem. For the precise proof of the uniqueness, refer to [8] and [9].

THEOREM 3.1. Let 2 be a bounded open subset of R" and let f €
L%*(Q). Then there exists a unique solution v € H'(Q) to the equation
(3.1a)—(3.1b). Moreover, if ) is of class C?, v € H*(Q) and we have

lullz.e < Clifllog,

where C is a positive constant which is independent of f.
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Proof. Cauchy-Kowalevsky theorem, unique continuation principle and
local regularity imply the uniqueness of the solution [20]. The existence
then follows from Fredholm alternative [7]. By an a priori estimate of
Agmon-Douglis-Nirenberg [2, 3] H?(Q)-regularity is obtained. O

The following a priori estimates will play a fundamental role in the
proof of the regularity in nonsmooth domains [19).

THEOREM 3.2. Let Q be a convex bounded domain in R™ with a C?
boundary and A a bounded measurable function such that Re \ > Ao > 0.
Then we have

[ullze < CA) || — Au+ Mulog,

for all w € H*(R) satisfying the boundary condition (3.1b), where the
constant C()) is given by

CA) = {:\1; (1+—)‘—1g) + (1+_||_/%q_n)2}%

The following lemma enables us to approximate nonsmooth domain
by a sequence of smooth domains [15, 23, 24, 27].

LEMMA 3.1. Let Q be a convex bounded domain in R™. Then there
exists a sequence, {Q1,}2°_,, of convex bounded domain in R™ with C2
boundaries I', such that Q C €, and d(T',T,,) — 0 as m — oc. For
large enough m, there exists a finite number of open subsets Vi, & =
L,2,..., K, of R" with the following properties:

1. For each k € N, there exist local coordinates {z*,... 2k} in
which Vj, is the hypercube

{(z{‘,...,z,’i)] —-af <z;-° <a§, 1<j<n}
2. For each k € N, there exist Lipschitz functions ¢* and *,
defined in
k k_ k _ k ~
Vk,:{z;c: (zl""7z1]'cl—l)| —a; <z <aj, 1<j<n-1}
such that

k
()] () < 3 for every 24 € W,
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(2k
PNV = {28 = (2, 28) | 2 = " (4
(/

K K
3. I'c|JVeandl,, C U Vi
k=1 k=1
In addition ¢* is a convex function and @k is a C*—continuous
convex function for all large enough m ¢ N.
4. @k — o uniformly on V) and there exists a positive constant
L such that

Vet (2l [Vek,(24)] < L,

forevery z; € V!, 1 < k < K, Furthermore, Vpk, — VoF qe.
inV).

Now we state the main theorem.

THEOREM 3.3. Let Q be a convex bounded domain in R" and let
f € L*(Q). Then there exists a unique solution w € H?(Q) to the
equation (3.1a)—(3.1b). Moreover, we have

lullz < Clifllog,
where C' is a positive constant which is independent of f.

To prove Theorem 3.3, we approximate the original domain ) from
the outside by a sequence of domains 1, with smoother boundaries r,,
which was chosen as in Lemma 3.1, and then consider sequence of the
solutions wu, to the equation (3.1a)-(3.1b) with respect to £, and T,,.
In Theorem 3.1, it is required that there exists a point p,, in the analytic
portion of I';, and a neighborhood of p,, in which ) is real analytic for
the well-posedness. These conditions will be satisfied provided that in
the neighborhood of the point p € I', the analytic portion of T can be
approximated by the analytic portion of T, for sufficiently large m. In
fact, by the assumptions on A and {29, this construction of ©,, is possible.
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Proof. Let 1, be chosen as in Lemma 3.1 and let f,, be the extension
of f to ©,,\ Q by zero. For each m € N, consider the following problem:
=AU, + My, = fr in Q,,,

Wﬁ—ﬂumzo on Iy,

Then by Theorem 3.1, there exists a unique solution u,, to the equation
(3.4) for each m € N.

Due to the compact perturbations (13, 18, 22], we may assume that
ReA > X > 0. By Theorem 3.2 there exists a subsequence of {um},
which will be denoted again by {un}, such that

Um = u  weakly in HQ(Q) as m — oo.

We are to show that u is the solution to the equation (3.1a)—(3.1b).
For each v € H(), there exists a Calderén extension v € H'(R") of v
such that 9|q = v[1]. We therefore have, for all m e N,

(Vim, Vi)a,, + (A, V) + (i, D)1, = (f, 9)q,,.. (3.5)

Now, each term in (3.5) will be shown to converge to the corresponding
term in (3.3) as m — co. First, we have

|t D, = (M, V)] < | (Mt )] + (At — ), )
< IAnllognlitllogma + A (um — u)loalfvflon
< C(I9loama + lum — ulloallvlon)

Both terms in the right-hand side in the above inequality converges
to zero as m — oo by Lebesgue dominated convergence theorem and
Rellich-Kondrachov theorem. Hence we obtain

(Mim, T)q,, — (M, v)g asm — co.

In the same way, we get (Vu,, Vi), — (Vu, Vo) as m — oo by
Rellich-Kondrachov theorem.
It remains to show

(U, D1, — (w0, 0)p0 as m — oo.

Let us choose a C*®—partition of unity, {wi} subordinate to {V;}. It is
sufficient to show

(W, DY, — (wew, v)r  as m — oc,
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forall k =1,2,..., K. By change of variables, we have

[ o = [ (@) e, oM + [V ()P def
and

Jnutdo = [ (@un) (et o )1+ [Vt )} deh.

k

Thus, we obtain

(wkum,f))pm — (wku, U)r = Il + 12 + 13,

where
L= [ (wru®)(zk, 9" (1)) {(1 + IVgof,.(zL)lz)% -1+ IV&Pk(ZQ)Iz)%} dzy,
Vi
= [ {(wkumd)(zk, om(k) — (@kumd)(2k, @*(20)) } (1 + Ithfn(ZL)IQ)% dzk
Vi

I3 = f, {(U)kUmE)(zl’n(Pk(z;c)) — (wkuv)(z,’”vk(z;‘))} (1 _ chpfn(z;)Iz)é dzl.

Now,
|| < 21 + L?)® /v' |(wkui)')(z,'c,(pk(z,'c))‘ dzj, < oo.
k

Thus by Lebesgue dominated convergence theorem, I; — 0 as m — oo.

For I, without loss of generality, we shall assume that & € C}(R™).
Using the relation

(Wrtm®) (2, O (24)) ~ (WrttmB) (24, 0 (24))

(prn(zk) a o ’ k k
m ? d 3
= [ g ren®)eh 4) ok
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we obtain
1

|12]<{/ (14 1Vek (20 [dkk}—

- { [, ) (o (1)) — (@) e 6 (1)) dz,;}

1

2 3
< C(1+ LY)? / .,
= ( ) 2V ”(10771 ¥ ”oo\/

< Cllwrth 00 2mvi [tn L amnv |05, — @ ”oo‘"

— (WrUm?)

Ozn

Hence we get
3
1L} < Clley, - SOkH;o,V,; —0 asm— oo
For I3, we have

[ < (14 29 [ |(whtunT — ) (2 0 (a4)]| dt

k

< (14 L2 Jum — ullorfwrvllor = 0 asm — co.
Therefore u satisfies the equation (3.3) and we have

[ullze < CM)I flloq
This completes the proof. 0
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