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GRADIENT TYPE ESTIMATES FOR LINEAR ELLIPTIC

SYSTEMS FROM COMPOSITE MATERIALS

Youchan Kim and Pilsoo Shin

Abstract. In this paper, we consider linear elliptic systems from com-

posite materials where the coefficients depend on the shape and might
have the discontinuity between the subregions. We derive a function

which is related to the gradient of the weak solutions and which is not
only locally piecewise Hölder continuous but locally Hölder continuous.

The gradient of the weak solutions can be estimated by this derived func-

tion and we also prove the local piecewise gradient Hölder continuity
which was obtained by the previous results.

1. Introductions

In this paper, we study linear elliptic systems from composite materials.
First, we describe our model problem in this paper. For composite materials,
the physical characteristics of the medium are divided into a finite number
of components or subregions. So let Ω ⊂ Rn (n ≥ 2) be a bounded domain
and Ω1, . . . ,Ωl ⊂ Ω be the mutually disjoint subregions (of Ω) with Ω0 :=
Ω\(Ω1∪· · ·∪Ωl). Here, the subregions Ω0,Ω1, . . . ,Ωl represent each component
of a composite material Ω. Since the physical characteristics are regular in each
component Ω0, . . . ,Ωl, we consider the following linear elliptic systems.

For C1,γ-domains Ω1, . . . ,Ωl and Ω, let u ∈W 1,2
(
Ω,RN

)
be a weak solution

of

(1.1) ∂α

[
Aαβ

ij (x)∂βu
j
]
= ∂αF

i
α in Ω

for 1 ≤ α, β ≤ n and 1 ≤ i, j ≤ N , where

(1.2) λ|ξ|2 ≤ Aαβ
ij (x)ξiαξ

j
β and

∣∣Aαβ
ij (x)

∣∣ ≤ Λ
(
x ∈ Ω, ξ ∈ RnN

)
for some positive constants λ and Λ. Because the physical characteristics are

regular in each subregion Ω0, . . . ,Ωl ⊂ Ω, we assume that Aαβ
ij , F

i
α ∈ Cµ(Ωk)(

k ∈ {0, . . . , l}
)
for any 1 ≤ α, β ≤ n and 1 ≤ i, j ≤ N . We remark that only
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the interior estimates will be obtained in this paper, and one may not impose
any regularity condition on the boundary data.

The regularity theory related to composite materials is motivated by the
numerical observation [2] that the gradient bound |Du| is independent of the
distance between the subdomains for certain homogeneous isotropic linear sys-
tems of elasticity. Bonnetier and Vogelius [3] considered a geometric structure
of two touching disk inside a disk to obtain a gradient boundedness of the weak
solution. Then Li and Vogelius [20] obtained the global Lipschitz regularity and
global piecewise gradient Hölder continuity for linear elliptic equations in gen-
eral geometry, say mutually disjoint subdomains Ω1, . . . ,Ωl inside the domain
Ω. Later, Li and Nirenberg [19] extended [20] by obtaining the local Lipschitz
regularity and the local piecewise gradient Hölder continuity for linear ellip-
tic systems. Here, “gradient piecewise Hölder continuous” means that Du is
Hölder continuous in each Ωk for any k ∈ {0, . . . , l} and “local gradient piece-
wise Hölder continuous” means that Du is Hölder continuous in each Ωk ∩ Ω′

for any k ∈ {0, . . . , l} and Ω′ ⊂⊂ Ω.
In [19, 20], they obtained the piecewise gradient Hölder continuity in the

point-wise sense by using the Schauder type approach. In this paper, we find
a suitable function related to the gradient of the weak solution which is not
only locally piecewise Hölder continuous but locally Hölder continuous (see
Theorem 1.7). Then by using that the coefficients are Hölder continuous in each
component, one can also show that the gradient of the weak solution is piecewise
Hölder continuous which was already obtained in [19, 20] (see Corollary 1.8).
The purpose for obtaining such a result is to derive a gradient type estimate
which can be used for an open problem suggested by Li and Nirenberg in [19]
which is related to the piecewise Hölder continuity of higher order derivatives for
weak solutions to elliptic equations from composite materials. We will obtain
the desired gradient Hölder type estimate by using the excess functional, say
−
∫
Qr(z)

∣∣g − (g)Qr(z)

∣∣ dx, which appears in Campanato type embeddings.

We introduce the notations in this paper. Let y = (y1, y′) ∈ Rn be a typical
point, and r > 0 be a size.

(1) Q′
r(y

′) =
{
x′ = (x2, . . . , xn) ∈ Rn−1 : max2≤i≤n |xi − yi| < r

}
is the

open cube in Rn−1 with center y′ and size r. Also we denote Q′
r =

Q′
r(0

′).
(2) Qr(y) =

{
x ∈ Rn : max1≤i≤n |xi − yi| < r

}
= (y1 − r, y1 + r)×Q′

r(y
′)

is the open cube in Rn with center y and size r. Also we denote
Qr = Qr(0).

(3) For a function g(x) in Rn,

(g)U = −
∫
U

g(x) dx =
1

|U |

∫
U

g(x) dx,

where U is an open subset in Rn and |U | is the n-dimensional Lebesgue
measure of U .
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A typical composite material Ω ⊂ Rn (n ≥ 2) composed of C1,γ-boundaries
can be described as follows. Let Ω1 ⊂ Ω be a connected component in Ω
and Ω2, . . . ,Ωl ⊂ Ω be the components surrounded by Ω1. Without loss of
generality, we may assume that Ω1 ∪ · · · ∪ Ωl and Ω2 ∪ · · · ∪ Ωl are open. Let
D2, . . . , Dm ⊂ Ω be the disjoint open connected components of Ω2 ∪ · · · ∪ Ωl.
Then for the open setD1 = Ω1∪· · ·∪Ωl, we have that Ω1 = D1\(D2∪· · ·∪Dm).
If D1, D2, . . . , Dm are C1,γ-domains, then we may say that the component (or
the subregion) Ω1 is composed of C1,γ-boundaries. For this geometry, one can
prove that for a sufficiently small scale, there exists a coordinate system such
that the boundary of the subregions becomes a graph, see for instance [17]. For
the composite geometry related to C1,γ-domains, we also refer to [19,20].

With the description in the previous paragraph, we may assume that the
cube Qr(z) can be divided into the components (of the composite material) or
the subregions by using C1,γ-graph functions {φk : k ∈ K+}. Here, K+ will be
used to denote the index set of graph functions. The subregions in Qr(z) will
be denoted as Qk

r (z) with a index set K. We remark that for the index of the
components K = {k−, k− + 1, . . . , k+}, there is an one more element {k+ + 1}
in the index set of the graph functions K+ = K ∪̇ {k+ + 1}. We also remark
that there can be only one element in K = {k−, k− + 1, . . . , k+}. In Definition
1.1, ∪̇k∈K Uk denotes disjoint union meaning that ∪̇k∈K Uk is the union of the
sets {Uk : k ∈ K} and that {Uk : k ∈ K} are mutually disjoint.

Definition 1.1. We say that (Qr(z), {φk : k ∈ K+}) is a composite cube if the
graph functions φk ∈ C1,γ (Q′

r(z
′)) (k ∈ K+) with K = {k−, k− + 1, . . . , k+}

and K+ = K ∪̇ {k+ + 1} satisfy that

φk(x
′) ≤ φk+1(x

′) (x ∈ Q′
r(z), k ∈ K) ,

and

Qr(z) = ∪̇
k∈K

Qk
r (z),

where Qk
r (y) :=

{
(x1, x′) ∈ Qr(y) : φk(x

′) < x1 ≤ φk+1(x
′)
}
(k ∈ K).

For the composite cube inside the cube, we use the following natural defini-
tion.

Definition 1.2. For the composite cube (Qr(z), {φk : k ∈ K+}), we denote

Qk
ρ(y) :=

{
(x1, x′) ∈ Qρ(y) : φk(x

′) < x1 ≤ φk+1(x
′)
}

(k ∈ K)

for any Qρ(y) ⊂ Qr(z).

Remark 1.3. If (Qr(z), {φk : k ∈ K+}) is a composite cube, then for any Qρ(y)
⊂ Qr(z), (Qρ(y), {φk : k ∈ K+}) is also a composite cube. Moreover, we have
that infQ′

r(z
′)

∣∣φk−

∣∣ ≥ r and infQ′
r(z

′)

∣∣φk++1

∣∣ ≥ r for K = {k−, k− + 1, . . . , k+,
k+ + 1}.

To state our main theorem, we define a vector-valued function π′ : Qr(z) →
Rn−1 which is naturally induced from our geometry.
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Definition 1.4. For the composite cube (Qr(z), {φk : k ∈ K}), define Tk :
Qr(z) → [0, 1] (k ∈ K) as

(1.3) Tk(x
1, x′) =

x1 − φk(x
′)

φk+1(x′)− φk(x′)
in Qk

r (z) (k ∈ K).

Then ‘the derivative of the naturally induced flow’ π : Qr(z) → Rn is defined
as

(1.4) π = (−1, π′) = (−1, π2, . . . , πn),

where

(1.5) πα(x) = Dαφk+1(x
′) · Tk(x) +Dαφk(x

′) · [1− Tk(x)] in Qk
r (z)

for any k ∈ K and α ∈ {2, . . . , n}.

Remark 1.5. At a boundary point of subregions, say x = (φk(x
′), x′) ∈ Qr(z)

(k ∈ K), we have that π′(x) = Dx′φk(x
′). Moreover, from the point (φk(x

′), x′)
to the point (φk+1(x

′), x′), the value of π′ changes linearly from Dx′φk(x
′) to

Dx′φk+1(x
′). So the derivative of the naturally induced flow remains the same

for any subset Qρ(y) ⊂ Qr(z).

Remark 1.6. In Definition 1.4, the reason for using the phrase ‘the derivative
of the naturally induced flow’ is that for the flow ψ : Qr−ϵ(z) × (−ϵ, ϵ) → Rn

defined as

ψ(x, t′) = [φk+1(x
′ + t′)−φk+1(x

′)] ·Tk(x)+ [φk(x
′ + t′)−φk(x

′)] · [1−Tk(x)],

we have that π′(x) = ∂tψ(x, t
′)
∣∣
t=0

. In [16], the concept of the (time) deriva-
tives of the flow will be used to solve the open problem suggested by Li, Niren-
berg and Vogelius in [19, 20]. But there are some technical difficulties related
to the discontinuities and we need some additional argument for proving the
piecewise smoothness for piecewise smooth coefficients, see the introduction of
[16].

We assume that Aαβ
ij : Rn → RNn×RNn (1 ≤ i, j ≤ N, 1 ≤ α, β ≤ n) satisfy

that

(1.6) λ|ζ|2 ≤
∑

1≤i,j≤N

∑
1≤α,β≤n

Aαβ
ij (x)ζiαζ

j
β

(
x ∈ Rn, ζ ∈ RNn

)
and

(1.7)
∣∣∣Aαβ

ij (x)
∣∣∣ ≤ Λ (x ∈ Rn, 1 ≤ i, j ≤ N, 1 ≤ α, β ≤ n) .

We now state the main results. In Theorem 1.7, we focus on the cube Q3R

and assume that the minimum of the absolute value of the graph functions are
smaller than 4R. If the minimum of the absolute value of the graph functions
such as φk− and φk++1 is greater than 4R, then one can choose new graph



LINEAR ELLIPTIC SYSTEMS FROM COMPOSITE MATERIALS 639

functions φk− and φk++1 in the way that the regions of the composite cube
remain the same. For the simplicity of the notation, we set

(1.8) µ =
γ

2(γ + 1)
∈
(
0,

1

4

]
.

We also explain the constant µ = γ
2(γ+1) in the condition Aαβ

ij , F
i
α ∈ Cµ

(
Qk

2R

)
.

The main tool for handling the composite domain or the composite cube is
the estimate on the non-crossing boundaries of the regions or the non-crossing
graph functions, (see for instance [20, Section 5] or [19, Section 4]) which comes
from that the boundary of the components in the composite materials does not
cross each other. In the estimate, we lose some regularity (see Lemma 2.1) and
the main equation behaves like elliptic equations with Cµ-Hölder continuous
coefficients.

Theorem 1.7. For the composite cube (Q3R, {φk : k ∈ K+}), assume that

(1.9) inf
x′∈Q′

3R

|φk| < 4R (k ∈ K+) .

Also for µ in (1.8), assume (1.6), (1.7) and that

Aαβ
ij , F

i
α ∈ Cµ

(
Qk

2R

)
for any 1 ≤ α, β ≤ n, 1 ≤ i, j ≤ N and k ∈ K. Let u be a weak solution of

Dα

[
Aαβ

ij Dβu
j
]
= DαF

i
α in Qr(z),

and define U : Q2R → RNn as U =
(
U1, . . . , UN

)T
and

U i =

 ∑
1≤α≤n

πα

 ∑
1≤j≤N

∑
1≤β≤n

Aαβ
ij Dβu

j

− F i
α

 , Dx′ui + π′D1u
i


for any 1 ≤ i ≤ N , where π : Q2R → Rn is defined in Definition 1.4. Then we
have that

(1.10)

1

ρ2µ
−
∫
Qρ(z)

∣∣U − (U)Qρ(z)

∣∣2 dx
≤ c

r2µ
−
∫
Qr(z)

∣∣U − (U)Qr(z)

∣∣2 dx
+

c

R2µ

[
−
∫
Qr(z)

|U |2 dx+ ∥F∥2L∞(Qr(z))
+R2µ sup

k∈K
[F ]2Cµ(Qk

r (z))

]
,

and

(1.11) −
∫
Qρ(z)

|U |2 dx ≤ c

(
−
∫
Qr(z)

|U |2 dx+ ∥F∥2L∞(Q2R) + r2µ sup
k∈K

[F ]2Cµ(Qk
r (z))

)
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for any z ∈ QR and 0 < ρ ≤ r ≤ R. Here, the constant c depends on
the terms n, N , λ, Λ, supk∈K+

∥Dx′φk∥L∞(Q′
3R), R

γ supk∈K+
[Dx′φk]Cγ(Q′

3R),

Rµ supk∈K

[
Aαβ

ij

]
Cµ(Qk

2R)
and the number of elements in the set K.

We will later prove that π′ ∈ C2µ(Q2R). We will compare Du and U later
in Lemma 4.1 and Lemma 4.2. So by using Theorem 1.7, one can obtain the
Lipschitz regularity and piecewise gradient Hölder estimates which were already
obtained in [19,20].

Corollary 1.8. For the composite cube (Q3R, {φk : k ∈ K+}), assume that

inf
x′∈Q′

3R

|φk| < 4R (k ∈ K+) .

Also for µ in (1.8), assume (1.6), (1.7) and that

Aαβ
ij , F

i
α ∈ Cµ

(
Qk

2R

)
for any 1 ≤ α, β ≤ n, 1 ≤ i, j ≤ N and k ∈ K. Let u be a weak solution of

Dα

[
Aαβ

ij Dβu
j
]
= DαF

i
α in Q2R.

Then we have that Du ∈ L∞(QR) and Du ∈ Cµ
(
Ql

R

)
for any l ∈ K with the

estimates

∥Du∥2L∞(QR) ≤ c

(
−
∫
Q2R

|Du|2 dx+ ∥F∥2L∞(Qk
2R) +R2µ sup

k∈K
[F ]2Cµ(Qk

2R)

)
and

[Du]2
Cµ(Ql

R)
≤ c

R2µ

(
−
∫
Q2R

|Du|2 dx+ ∥F∥2L∞(Q2R) +R2µ sup
k∈K

[F ]2Cµ(Qk
2R)

)
for any l ∈ K. Here, the constant c depends on n,N, λ,Λ, supk∈K+

∥Dx′φk∥L∞(Q′
3R),

Rγ supk∈K+
[Dx′φk]Cγ(Q′

3R), Rµ supk∈K

[
Aαβ

ij

]
Cµ(Qk

2R)
and the number of elements in the

set K.

We refer to Calderón-Zygmund type estimate for linear equations [10–12,21]
and p-Laplace type equations [13,22]. Also there is another direction about the
elliptic equation from composite materials which is the blow up phenomenon
such as two almost touching fibres having the extreme (0 or ∞) conductivities,
see [1, 14].

For the sake of the convenience, unless specified, we employ the letter
c ≥ 1 throughout this paper to denote any constants that can be explicitly
computed in terms of the constants n, N , λ, Λ, supk∈K+

∥Dx′φk∥L∞(Q′
3R),

Rγ supk∈K+
[Dx′φk]Cγ(Q′

3R), R
µ supk∈K

[
Aαβ

ij

]
Cµ(Qk

2R)
(1 ≤ α, β ≤ n, 1 ≤

i, j ≤ n) and |K| the number of elements in the set K. Thus the exact value
denoted by c may change from line to line in a given computation.



LINEAR ELLIPTIC SYSTEMS FROM COMPOSITE MATERIALS 641

2. Estimates on the derivative of the naturally induced flow

In this section we will prove that the derivative of the naturally induced flow
π in (1.4) is locally Hölder continuous in the cube.

2.1. Decay estimate for the graph functions

To handle two non-crossing graph functions in {φk : k ∈ K+}, we use follow-
ing result, which naturally holds from our geometric settings (also see [20, Sec-
tion 5] or [19, Section 4]).

Lemma 2.1. Suppose that φk, φl : C
1,γ(Q′

r+ρ) → R satisfy that

[Dx′φk]Cγ(Q′
r+ρ)

, [Dx′φl]Cγ(Q′
r+ρ)

≤ c1,

∥φk∥L∞(Q′
r+ρ)

, ∥φl∥L∞(Q′
r+ρ)

≤ c2,

and
φk ≤ φl in Q′

r+ρ.

Then we have that

(2.1) |Dx′φl(x
′)−Dx′φk(x

′)| ≤ 3ρ−1
(
ρ1+γc1 + 2c2

) 1
γ+1 [φl(x

′)− φk(x
′)]

γ
γ+1

for any x′ ∈ Q′
r.

Proof. Fix x′ ∈ Q′
r. Choose y

′ ∈ Q′
r+ρ with

(2.2) y′ = x′ − Dx′φl(x
′)−Dx′φk(x

′)

|Dx′φl(x′)−Dx′φk(x′)|

(
[φl(x

′)− φk(x
′)]

ρ1+γc1 + 2c2

) 1
γ+1

ρ.

Then by the Taylor expansion of φl − φk with respect to x′,

[φl(x
′)− φk(x

′)]− [φl(y
′)− φk(y

′)]

≥ [Dx′φl(x
′)−Dx′φk(x

′)] · (x′ − y′)

−
(
[Dx′φl]Cγ(Q′

r+ρ)
+ [Dx′φk]Cγ(Q′

r+ρ)

)
|x′ − y′|1+γ .

Since φl(y
′) ≥ φk(y

′), we find from (2.2) that

φl(x
′)− φk(x

′)

≥ ρ|Dx′φl(x
′)−Dx′φk(x

′)|
(
[φl(x

′)− φk(x
′)]

ρ1+γc1 + 2c2

) 1
γ+1

−
ργ+1

(
[Dx′φl]Cγ(Q′

r+ρ)
+ [Dx′φk]Cγ(Q′

r+ρ)

)
[φl(x

′)− φk(x
′)]

ργ+1c1 + 2c2
.

So with that [Dx′φk]Cγ(Q′
r+ρ)

, [Dx′φl]Cγ(Q′
r+ρ)

≤ c1, we absorb the last term

on the right-hand side to the left-hand side to find that

3[φl(x
′)− φk(x

′)] ≥ ρ|Dx′φ0(x
′)−Dx′φ1(x

′)|
(
[φl(x

′)− φk(x
′)]

ρ1+γc1 + 2c2

) 1
γ+1

,

and so the lemma holds. □
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Remark 2.2. With the assumption in the main theorems, the estimate (2.1) in
Lemma 2.1 has scaling invariance. By taking r = 2R and ρ = R, we use the
condition (1.9) to find that

c2 = sup
k∈K+

∥φk∥L∞(Q′
3R) ≤ 4R+ 2nR sup

k∈K+

∥Dx′φk∥L∞(Q′
3R).

Thus with c1 = supk∈K+
[Dx′φk]Cγ(Q′

3R),

|Dx′φl(x
′)−Dx′φk(x

′)|

≤ 6

[
Rγ sup

k∈K+

[Dx′φk]Cγ(Q′
3R) + 1 + n sup

k∈K+

∥Dx′φk∥L∞(Q′
3R)

] 1
γ+1 [

φl(x
′)− φk(x

′)

R

] γ
γ+1

for any x′ ∈ Q′
2R and k, l ∈ K+.

In the main theorem, we obtain the estimate with respect to the cube Q3R.
But for proving the main theorem, we localize the problem and derive the
estimates with respect to the cube Qr(z) ⊂ Q2R. So from now on, we will
assume that

|Dx′φl(x
′)−Dx′φk(x

′)| ≤ κR−2µ|φl(x
′)− φk(x

′)|2µ (x′ ∈ Q′
r(z), l, k ∈ K+)

for some constant κ > 0, where this constant will be chosen as

κ = 18n

(
1 +Rγ sup

k∈K+

[Dx′φk]Cγ(Q′
3R) + sup

k∈K+

∥Dx′φk∥L∞(Q′
3R)

)

+R2µ sup
k∈K

[
Aαβ

ij

]2
Cµ(Qk

2R)
,

in the proof of the main theorem. Here, we also remark that

R2µ [Dx′φk]C2µ(Q′
3R) ≤ (3nR)γ [Dx′φk]Cγ(Q′

3R) ≤ κ (k ∈ K+) .

2.2. Estimate on (π2, . . . , πn)

With Lemma 2.1, we obtain Hölder estimates related to πi in Lemma 2.4.
The results in this section are obtained with respect to the origin, but the origin
can be changed to an arbitrary point in Rn by using translation.

For the composite cube (Q2r, {φk : k ∈ K+}), let π be the derivative of the
naturally induced flow π : Q2r → Rn in Definition 1.4. Then

(2.3) π = (−1, π′) = (−1, π2, . . . , πn),

where

(2.4) πα(x) = Dαφk+1(x
′) · Tk(x) +Dαφk(x

′) · [1− Tk(x)] in Qk
2r

for any k ∈ K and α ∈ {2, . . . , n}. In view of Lemma 2.1, we assume that

(2.5) |Dx′φl(x
′)−Dx′φk(x

′)| ≤ κ

(
|φl(x

′)− φk(x
′)|

R

)2µ

(x′ ∈ Q2r, k, l ∈ K+)
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and

(2.6) |Dx′φk(x
′)−Dx′φk(y

′)| ≤ κ

(
|x′ − y′|

R

)2µ

(x′, y′ ∈ Q′
2r, k ∈ K+)

for some constants κ > 0 and R > 0. Also recall from (1.8) that 2µ = γ
γ+1 .

For this subsection, we employ the letter c ≥ 1 to denote any constants that
can be explicitly computed in terms such as n, κ, supk∈K+

∥Dx′φk∥L∞(Q′
2r)

and the number of elements in the set K.
We first handle the case when the two points belong to the same region.

Lemma 2.3. Under the assumptions (2.5) and (2.6), we have that∣∣π′(y)− π′(z)
∣∣ ≤ cκ

(
|y − z|
R

)2µ (
y, z ∈ Qk

2r ∩Q2r

)
for any k ∈ K.

Proof. Let y = (y1, y′) ∈ Qk
2r ∩Q2r and z = (z1, z′) ∈ Qk

2r ∩Q2r. Then

(2.7) φk(y
′) ≤ y1 ≤ φk+1(y

′) and φk(z
′) ≤ z1 ≤ φk+1(z

′).

To prove the lemma, we take

(2.8) w =
y1 − φk(y

′)

φk+1(y′)− φk(y′)
[φk+1(z

′)− φk(z
′)] + φk(z

′) ∈ R.

Then we claim that

(2.9) w ∈ [φk(z
′), φk+1(z

′)] and |(w, z′)− y|+ |(w, z′)− z| ≤ c|y − z|γ .
By a direct calculation using (2.8), we have from (2.7) that

w − φk(z
′) =

y1 − φk(y
′)

φk+1(y′)− φk(y′)
[φk+1(z

′)− φk(z
′)] ≥ 0

and

φk+1(z
′)− w =

φk+1(y
′)− y1

φk+1(y′)− φk(y′)
[φk+1(z

′)− φk(z
′)] ≥ 0

which implies that

(2.10) w ∈ [φk(z
′), φk+1(z

′)].

To prove the second inequality of (2.9), recall from (2.8) and (2.7) that

w =
y1 − φk(y

′)

φk+1(y′)− φk(y′)
([φk+1(z

′)− φk+1(y
′)]− [φk(z

′)− φk(y
′)])

+ φk(z
′)− φk(y

′) + y1,

and ∣∣∣∣ y1 − φk(y
′)

φk+1(y′)− φk(y′)

∣∣∣∣ ≤ 1.

So we obtain that

(2.11) |w−z1| ≤ |φk+1(z
′)−φk+1(y

′)|+2|φk(z
′)−φk(y

′)|+|y1−z1| ≤ c|y−z|,
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and

(2.12) |w − y1| ≤ |φk+1(z
′)− φk+1(y

′)|+ 2|φk(z
′)− φk(y

′)| ≤ c|y − z|.
So the claim (2.9) holds from (2.10), (2.11) and (2.12).

To estimate π′(y) − π′(z), with (2.8), we make the following computations
that

Dx′φk+1(z
′)[z1 − φk(z

′)]

φk+1(z′)− φk(z′)
=
Dx′φk+1(z

′)[z1 − w + w − φk(z
′)]

φk+1(z′)− φk(z′)

=
Dx′φk+1(z

′)[z1 − w]

φk+1(z′)− φk(z′)
+
Dx′φk+1(z

′)[y1 − φk(y
′)]

φk+1(y′)− φk(y′)
,

and

Dx′φk(z
′)[φk+1(z

′)− z1]

φk+1(z′)− φk(z′)
=
Dx′φk(z

′)[φk+1(z
′)− w + w − z1]

φk+1(z′)− φk(z′)

=
Dx′φk(z

′)[φk+1(y
′)− y1]

φk+1(y′)− φk(y′)
+
Dx′φk(z

′)[w − z1]

φk+1(z′)− φk(z′)
.

By the definition of π′(y) and π′(z) in (1.5),

π′(z)− π′(y) =

[
Dx′φk+1(z

′)[z1 − φk(z
′)]

φk+1(z′)− φk(z′)
+
Dx′φk(z

′)[φk+1(z
′)− z1]

φk+1(z′)− φk(z′)

]
−
[
Dx′φk+1(y

′)[y1 − φk(y
′)]

φk+1(y′)− φk(y′)
+
Dx′φk(y

′)[φk+1(y
′)− y1]

φk+1(y′)− φk(y′)

]
.

So it follows that

π′(z)− π′(y) =
[Dx′φk+1(z

′)−Dx′φk(z
′)][z1 − w]

φk+1(z′)− φk(z′)

+
[Dx′φk(z

′)−Dx′φk(y
′)][φk+1(y

′)− y1]

φk+1(y′)− φk(y′)

+
[Dx′φk+1(z

′)−Dx′φk+1(y
′)][y1 − φk(y

′)]

φk+1(y′)− φk(y′)
.

It only remains to estimate the right-hand side of the above equality. By (2.5),

(2.13) |Dx′φk+1(z
′)−Dx′φk(z

′)| ≤ κ

(
|φk+1(z

′)− φk(z
′)|

R

)2µ

.

From (2.7) and (2.9), we have that

(2.14) w, z1 ∈ [φk(z
′), φk+1(z

′)] and y1 ∈ [φk(y
′), φk+1(y

′)].

So by (2.6), (2.13) and (2.14), we obtain that∣∣π′(z)− π′(y)
∣∣ ≤ cκ

[(
|z1 − w|

R

)2µ

+

(
|y′ − z′|

R

)2µ
]
,

and the lemma follows from (2.11). □

With Lemma 2.3, we now obtain the Hölder continuity of π′ in Q2r.
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Lemma 2.4. Under the assumptions (2.5) and (2.6), we have that∣∣π′(y)− π′(z)
∣∣ ≤ cκ

(
|y − z|
R

)2µ

(y, z ∈ Q2r).

Proof. If y, z ∈ Qk
2r (k ∈ K), then the lemma holds from Lemma 2.3. So

suppose that y ∈ Qk
2r and z ∈ Ql

2r with k < l (k, l ∈ K). Let α : [0, 1] → Q2r

be a line connecting y and z. Then on the line α, one can choose the points

wk+1 =
(
φk+1(w

′
k+1), w

′
k+1

)
∈ Qk

2r ∩Q
k+1
2r ,

wk+2 =
(
φk+2(w

′
k+2), w

′
k+2

)
∈ Qk+1

2r ∩Qk+2
2r ,(2.15)

...

wl = (φl(w
′
l), w

′
l) ∈ Ql−1

2r ∩Ql
2r.

Let y = wk and z = wl+1. Since y ∈ Qk
2r and z ∈ Ql

2r, we find from (2.15) and
Lemma 2.3 that

|π′(wm)− π′ (wm+1)| ≤ cκ

(
|wm − wm+1|

R

)2µ

(m = k, . . . , l) .

Since the points y = wk, wk+1, wk+1, . . . , wl and wl+1 = z are placed on the
line connecting y and z, we get that

|π′ (wm)− π′(wm+1)| ≤ cκ

(
|y − z|
R

)2µ

(m = k, . . . , l) .

So the lemma follows by the triangle inequality. □

3. Gradient estimates for reference equations

In this section, we obtain gradient estimates for when the coefficients are
measurable in one variable. The results in this section are based on [6] and
[7, Lemma 3.5], but we write this section for the convenience of the readers.
For the extension to nonlinear problems, see [4]. For this section, we employ
the letter c ≥ 1 to denote any constants that can be explicitly computed in
terms such as n, N , λ and Λ.

Assume that

(3.1) λ|ξ|2 ≤ Aαβ
ij (x1)ξiαξ

j
β and

∣∣∣Aαβ
ij (x1)

∣∣∣ ≤ Λ
(
x ∈ Q2, ξ ∈ RnN

)
for some positive constants λ and Λ. Let h ∈W 1,2

(
Q2,RN

)
be a weak solution

of

(3.2) Dα

[
Aαβ

ij (x1)Dβh
j
]
= 0 in Q2.

We first have the following energy estimate in the following lemma.
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Lemma 3.1. Under the assumption (3.1), let h be a weak solution of (3.2).
Then ∫

Qρ

|Dh|2 dx ≤ c

ρ2

∫
Q2ρ

∣∣h− (h)Q2ρ

∣∣2 dx
for any ρ ∈ (0, 1].

Proof. Fix ρ ∈ (0, 1]. In view of (3.2),

(3.3) Dα

[
Aαβ

ij (x1)Dβ

(
hj − (hj)Q2ρ

)]
= 0 in Q2ρ.

Choose a cut-off function ϕ ∈ C∞
c (Q2ρ) with

(3.4) 0 ≤ ϕ ≤ 1, |Dϕ| ≤ cρ−1 and ϕ = 1 in Qρ.

We test (3.3) by
[
hi − (hi)Q2ρ

]
ϕ2 to find that∫

Q2ρ

〈
Aαβ

ij (x1)Dβ

[
hj − (hj)Q2ρ

]
, Dα

[
hi − (hi)Q2ρ

]〉
ϕ2 dx

= −
∫
Q2ρ

〈
Aαβ

ij (x1)Dβ

[
hj − (hj)Q2ρ

]
,
[
hi − (hi)Q2ρ

]
2ϕDαϕ

〉
dx.

Then by (3.1) and Young’s inequality, we have∫
Q2ρ

∣∣Dh∣∣2ϕ2 dx ≤ c

∫
Q2ρ

∣∣h− (h)Q2ρ

∣∣2|Dϕ|2 dx,
and the lemma follows from (3.4). □

We have the following higher order estimate in the following lemma.

Lemma 3.2. Under the assumption (3.1), let h be a weak solution of (3.2).
Then for any integer p ≥ 0, we have that∫

Q1

∣∣Dp
x′Dh

∣∣2 dx ≤ c(p)

∫
Q2

∣∣h− (h)Q2

∣∣2 dx.
Proof. If p = 0, then the lemma holds from Lemma 3.1. So we assume that
p ≥ 1.

Let q ∈ {0, . . . , p} and ρq = 1 + 1
q+1 . Fix (0, ξ′) ∈ Nn with |(0, ξ′)| = q.

Then we have that

(3.5) Dα

(
Aαβ

ij (x1)Dβ

[
Dξ′

(
hj − (hj)Q2ρ

)] )
= 0 in Q2.

Choose a cut-off function ϕ ∈ C∞
c (Qρq ) with

(3.6) 0 ≤ ϕ ≤ 1, |Dϕ| ≤ c(q) and ϕ = 1 in Qρq+1
.

We test (3.5) by Dξ′
(
hi − (hi)Q2

)
ϕ2 to find that∫

Qρq

〈
Aαβ

ij (x1)Dβ

[
Dξ′

(
hj − (hj)Q2

)]
, Dα

[
Dξ′

(
hi − (hi)Q2

)] 〉
ϕ2 dx

= −
∫
Qρq

〈
Aαβ

ij (x1)Dβ

[
Dξ′

(
hi − (hi)Q2

)]
,
[
Dξ′

(
hi − (hi)Q2

)]
2ϕDαϕ

〉
dx.



LINEAR ELLIPTIC SYSTEMS FROM COMPOSITE MATERIALS 647

Then by (3.2) and Young’s inequality,∫
Qρq

∣∣DDξ′ (h− (h)Q2θ
)
∣∣2ϕ2 dx ≤ c

∫
Qρq

∣∣Dξ′ (h− (h)Q2θ
)
∣∣2|Dϕ|2 dx,

whence we have from (3.6) that∫
Qρq+1

∣∣DDξ′ (h− (h)Q2)
∣∣2 dx ≤ c(q)θ−2

∫
Qρq

∣∣Dξ′ (h− (h)Q2)
∣∣2 dx.

Since ξ′ ∈ Nn−1 was arbitrarily chosen, we find that∫
Qρq+1

∣∣DDq
x′ (h− (h)Q2

)
∣∣2 dx ≤ c(q)

∫
Qρq

∣∣Dq
x′ (h− (h)Q2

)
∣∣2 dx.

Also since q ∈ {0, . . . , p} was arbitrarily chosen, if we apply induction, we get
that ∫

Q1

∣∣DDp
x′h
∣∣2 dx ≤

∫
Qρp+1

∣∣DDp
x′h
∣∣2 dx ≤ c(p)

∫
Q2

∣∣h− (h)Q2

∣∣2 dx
and this complete the proof. □

Lemma 3.3. Under the assumption (3.1), let h be a weak solution of (3.2).
Then

|h(x)− h(y)|2 ≤ c|x− y|
∫
Q2

∣∣h− (h)Q2

∣∣2 dx
for any x, y ∈ Q1.

Proof. By using an approximation argument, we may assume that h ∈ C1(Q2).
To use the Sobolev type embedding, we take an integer p > n

2 .

Let (x1, x′), (y1, y′) ∈ Q1. We use the Sobolev embedding theorem in x1-
variable to find∣∣h(x1, x′)− h(y1, x′)

∣∣2 ≤ c
∣∣x1 − y1

∣∣ ∫
(−1,1)

|D1h(z
1, x′)|2 dz1.

Also for any fixed z1 ∈ (−1, 1), applying the Sobolev embedding theorem in
x′-variable, we have∣∣D1h(z

1, x′)
∣∣2 ≤ c

∑
0≤q≤p

∫
Q′

1

∣∣Dq
x′D1h(z

1, z′)
∣∣2 dz′.

So it follows that

(3.7)
∣∣h(x1, x′)− h(y1, x′)

∣∣2 ≤ c|x− y|
∑

0≤q≤p

∫
Q1

∣∣Dq
x′D1h(z

1, z′)
∣∣2 dz1dz′.

On the other hand, by applying the Sobolev embedding theorem first in
x′-variable and then in x1-variable, we obtain that∣∣h(x1, x′)− h(x1, y′)

∣∣2 ≤ c|x′ − y′|
∑

1≤q≤p

∫
Q′

1

∣∣Dq
x′h(x

1, z′)
∣∣2 dz′,
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and∣∣Dq
x′h(x

1, z′)
∣∣2 ≤ c

∫
(−1,1)

∣∣Dq
x′h(z

1, z′)
∣∣2 + ∣∣Dq

x′D1h(z
1, z′)

∣∣2 dz1 (0 ≤ q ≤ p)

for any fixed z1 ∈ (−1, 1). So we have that

(3.8)
∣∣h(x1, x′)− h(x1, y′)

∣∣2 ≤ c|x− y|
∑

0≤q≤p

∫
Q1

∣∣Dq
x′Dh(z

1, z′)
∣∣2 dz1dz′.

By combining (3.7) and (3.8), we discover that∣∣h(x1, x′)− h(y1, y′)
∣∣2 ≤ c|x− y|

∑
0≤q≤p

∫
Q1

|Dq
x′Dh(z)|2 dz.

Now using Lemma 3.2, we finish the proof of the lemma. □

Next, we handle the inhomogeneous case. Under the assumptions (3.1), let
w ∈W 1,2

(
Q2,RN

)
be a weak solution of

(3.9) Dα

[
Aαβ

ij (x1)Dβw
j
]
= D1F

i
1(x

1) in Q2.

Set W : Q2 → RNn, where W =
(
W 1, . . . ,WN

)T
and

(3.10) W i =

− ∑
1≤j≤N

∑
1≤β≤n

A1β
ij (x

1)Dβw
j

+ F i
1(x

1), Dx′wi


for any 1 ≤ i ≤ N . Then A1β

ij (x
1)Dβw

j − F i
1(x

1) is weakly differentiable for

any i ∈ {1, . . . , N} as in the following lemma.

Lemma 3.4. With (3.1), let w be a weak solution of (3.9). Then

|DW1| ≤ c |DDx′w(x)| (a.e. x ∈ Q2) .

Proof. Since F i
1 is a function of x1-variable, Dβw

j are weakly differentiable
in Q2 for the x′-variables. So by the definition of weak solution and (3.9),

A1β
ij (x

1)Dβw
j − F i

1(x
1) are weakly differentiable in the x1-variable. Thus

D1W
i
1 = D1

[
A1β

ij (x
1)Dβw

j(x)− F i
1(x

1)
]
= −

∑
2≤α≤n

Dα

[
A1β

ij (x
1)Dβw

j(x)
]

= −
∑

2≤α≤n

A1β
ij (x

1)DαDβw
j(x)

for a.e. x ∈ Q2 and 1 ≤ i ≤ N . So we find that∣∣D1W
i
1

∣∣= ∣∣∣D [A1β
ij (x

1)Dβw
j(x)−F i

1(x
1)
]∣∣∣

≤
∣∣∣D1

[
A1β

ij (x
1)Dβw

j(x)−F i
1(x

1)
]∣∣∣+∣∣∣Dx′

[
A1β

ij (x
1)Dβw

j(x)−F i
1(x

1)
]∣∣∣

≤c|DDx′w(x)|
for a.e. x ∈ Q2 and 1 ≤ i ≤ N . □
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With Lemma 3.4, we obtain the following excess decay estimate.

Lemma 3.5. Under the assumption (3.1), let w be a weak solution of (3.9).
Then for W in (3.10), we have that

−
∫
Qρ

∣∣W − (W )Qρ

∣∣2 dx ≤ cρ−
∫
Q2

∣∣W − (W )Q2

∣∣2 dx (ρ ∈ (0, 2]) .

Proof. By differentiating (3.9) with respect to xm-variable (m ∈ {2, . . . , n}),

(3.11) Dα

[
Aαβ

ij (x1)Dβ

(
Dmw

j
)]

= 0 in Q2.

So by applying Lemma 3.3 to (3.11) and Dmw instead of (3.2) and h respec-
tively,

(3.12) −
∫
Qρ

∣∣Dmw − (Dmw)Qρ

∣∣2 dx ≤ cρ

∫
Q2

∣∣Dmw − (Dmw)Q2

∣∣2 dx
for any ρ ∈ (0, 1]. Also by applying Lemma 3.1 to (3.11) and Dmw instead of
(3.2) and h respectively,

(3.13)

∫
Qρ

|DDmw|2 dx ≤ c

ρ2

∫
Q2ρ

∣∣Dmw − (Dmw)Q2ρ

∣∣2 dx
for any ρ ∈ (0, 1]. Since m ∈ {2, . . . , n} was arbitrarily chosen, we find from
(3.12) and (3.13) that

(3.14) −
∫
Qρ

∣∣Dx′w − (Dx′w)Qρ

∣∣2 dx ≤ cρ

∫
Q2

∣∣Dx′w − (Dx′w)Q2

∣∣2 dx,
and

(3.15)

∫
Qρ

|DDx′w|2 dx ≤ c

ρ2

∫
Q2ρ

∣∣Dx′w − (Dx′w)Q2ρ

∣∣2 dx
for any ρ ∈ (0, 1].

With (3.10), by Poincaré’s inequality and Lemma 3.4,

−
∫
Qρ

∣∣∣(W1)− (W1)Qρ

∣∣∣2 dx ≤ cρ2 −
∫
Qρ

|DW1|2 dx ≤ cρ2 −
∫
Qρ

∣∣DDx′w
∣∣2dx

for any ρ ∈ (0, 1/2]. By (3.14) and (3.15),

ρ2 −
∫
Qρ

∣∣DDx′w
∣∣2dx ≤ −

∫
Q2ρ

∣∣Dx′w − (Dx′w)Q2ρ

∣∣2 dx
≤ cρ

∫
Q2

∣∣Dx′w − (Dx′w)Q2

∣∣2 dx
for any ρ ∈ (0, 1/2]. Thus

−
∫
Qρ

∣∣∣W1 − (W1)Qρ

∣∣∣2 dx ≤ cρ

∫
Q2

∣∣Dx′w − (Dx′w)Q2

∣∣2 dx
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for any ρ ∈ (0, 1/2]. So with (3.14), we find from (3.10) and Hölder’s inequality
that

(3.16) −
∫
Qρ

∣∣W − (W )Qρ

∣∣2 dx ≤ cρ−
∫
Q2

∣∣W − (W )Q2

∣∣2 dx
for any ρ ∈ (0, 1/2]. If ρ ∈ (1/2, 2], then one can check that

−
∫
Qρ

∣∣W − (W )Qρ

∣∣2 dx ≤ 2−
∫
Qρ

∣∣W − (W )Q2

∣∣2 + ∣∣(W )Q2 − (W )Qρ

∣∣2 dx
≤ c−
∫
Q2

∣∣W − (W )Q2

∣∣2 dx,
which implies that

(3.17) −
∫
Qρ

∣∣W − (W )Qρ

∣∣2 dx ≤ cρ−
∫
Q2

∣∣W − (W )Q2

∣∣2 dx
for any ρ ∈ (1/2, 2]. So we discover from (3.16) and (3.17) that the lemma
holds. □

4. Comparison of Hölder norm

In Section 3, we derived the excess decay estimate with respect to the func-
tional W not the gradient of the weak solution Dw. With this estimate, we
will obtain the excess decay estimate with respect to the functional U in (4.3)
(which corresponds to W ) not Du. So to obtain the piecewise Hölder continu-
ity of Du, we compare the Hölder norm of U and the Hölder norm of Du in
this section.

In the later sections we will consider composite cubes. So unlikeW in (3.10),
U in (4.3) depends on π′ in (1.4) which was naturally induced by our geometry.
In fact, we will use Lemma 5.9 in the later paper [16]. So to minimize the
condition of the results, we consider only one point for Lemma 4.1 and two
points for Lemma 4.2.

We compare U with Du and F in the following lemma. Later, we will take
ζjβ = Dβu

j .

Lemma 4.1. Let π = (−1, π2, . . . , πn) ∈ Rn and π1 = −1. For the constants

(4.1) Aαβ
ij , F

i
α, ζ

i
α (1 ≤ i, j ≤ N, 1 ≤ α, β ≤ n),

satisfying (1.6) and (1.7), we define U ∈ RNn as

(4.2) U =

 U1
1 · · · U1

n
...

. . .
...

UN
1 · · · UN

n

 ,
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where

(4.3) U i
1 =

∑
1≤α≤n

πα

 ∑
1≤j≤N

∑
1≤β≤n

Aαβ
ij ζ

j
β

− F i
α

 (i = 1, . . . , N)

and

(4.4) U i
β = ζiβ + πβ ζ

i
1 (i = 1, . . . , N, β = 2, . . . , n).

Then we have that

(4.5) |ζ| ≤ c
[
|U |+ |F |

]
,

where c is a constant only depending on n,N, λ and Λ.

Proof. Since π1 = −1, it follows from (4.3) and (4.4) that

U i
1 =

∑
1≤α≤n

πα

 ∑
1≤j≤N

∑
2≤β≤n

Aαβ
ij U

j
β

− F i
α


−

∑
1≤α≤n

πα

 ∑
1≤j≤N

∑
1≤β≤n

Aαβ
ij πβζ

j
1


for any i = 1, . . . , N , which implies that

(4.6)

∑
1≤j≤N

∑
1≤α,β≤n

Aαβ
ij παπβζ

j
1

=
∑

1≤α≤n

πα

 ∑
1≤j≤N

∑
2≤β≤n

Aαβ
ij U

j
β

− F i
α

− U i
1

for any i = 1, . . . , N . Thus∑
1≤i,J≤N

∑
1≤α,β≤n

Aαβ
ij

(
παζ

i
1

) (
πβζ

j
1

)

=
∑

1≤i≤N

ζi1

 ∑
1≤α≤n

πα

 ∑
1≤j≤N

∑
2≤β≤n

Aαβ
ij U

j
β

− F i
α

− U i
1

 .

So from (1.6), (1.7) and that π1 = −1, we obtain that

λ|π|2|ζ1|2 ≤ |π||ζ1|

 ∑
1≤α≤n

 ∑
1≤j≤N

∑
2≤β≤n

∣∣∣Aαβ
ij U

j
β

∣∣∣
+

∣∣F i
α

∣∣+ |U1|


whence

(4.7) |ζ1| ≤ |π||ζ1| ≤ c
[
|U |+ |F |

]
.

Moreover, from (4.4) and (4.7), we discover that

|ζβ | ≤ |U |+ |π||ζ1| ≤ c
[
|U |+ |F |

]
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for any β = 2, . . . , n. This and (4.7) complete the proof. □

To obtain the Hölder semi-norm Du with the Hölder semi-norms U and F ,
we consider the two points set as a domain in the following lemma.

Lemma 4.2. For fixed x, y ∈ Rn (x ̸= y), let π = (−1, π2, . . . , πn) : {x, y} →
Rn and π1 = −1. For the functions

Aαβ
ij : {x, y} → RNn × RNn, F i

α : {x, y} → RNn and ζiα : {x, y} → RNn,

satisfying (1.6) and (1.7) (1 ≤ α, β ≤ n, 1 ≤ i, j ≤ N), we define U : {x, y} →
RNn as

(4.8) U =

 U1
1 · · · U1

n
...

. . .
...

UN
1 · · · UN

n

 ,

where

(4.9) U i
1 =

∑
1≤α≤n

πα

 ∑
1≤j≤N

∑
1≤β≤n

Aαβ
ij ζ

j
β

− F i
α

 (i = 1, . . . , N)

and

(4.10) U i
β = ζiβ + πβ ζ

i
β (i = 1, . . . , N, β = 2, . . . , n).

Then we have that

|ζ(x)− ζ(y)| ≤ c
[
|U(y)− U(x)|+ |F (y)− F (x)|

]
+ c
[
|U(x)|+ |F (x)|

] [
|π(x)− π(y)|+ |π(x)− π(y)|2

]
+ c
[
|U(x)|+ |F (x)|

] ∑
1≤i,j≤N

∑
1≤α,β≤n

∣∣∣Aαβ
ij (y)−Aαβ

ij (x)
∣∣∣ ,

where the constant c only depends on n, N, λ and Λ.

Proof. In this proof, c denotes a constant only depending on n, N, λ and Λ.
Since π1 = −1, it follows from (4.3) and (4.4) that

U i
1 =

∑
1≤α≤n

πα

 ∑
1≤j≤N

∑
2≤β≤n

Aαβ
ij U

j
β

− F i
α


−

∑
1≤α≤n

πα

 ∑
1≤j≤N

∑
1≤β≤n

Aαβ
ij πβζ

j
1


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for any i = 1, . . . , N , which implies that

(4.11)

∑
1≤j≤N

∑
1≤α,β≤n

Aαβ
ij παπβζ

j
1

=
∑

1≤α≤n

πα

 ∑
1≤j≤N

∑
2≤β≤n

Aαβ
ij U

j
β

− F i
α

− U i
1

for any i = 1, . . . , N . One can directly check that

(4.12)

∑
1≤j≤N

 ∑
1≤α,β≤n

Aαβ
ij (y)πα(y)πβ(y)

[ζj1(y)− ζj1(x)
]

=
∑

1≤j≤N

 ∑
1≤α,β≤n

Aαβ
ij (y)πα(y)πβ(y)

 ζj1(y)
+

∑
1≤j≤N

∑
1≤α,β≤n

[
Aαβ

ij (x)πα(x)πβ(x)−Aαβ
ij (y)πα(y)πβ(y)

]
ζj1(x)

−
∑

1≤j≤N

 ∑
1≤α,β≤n

Aαβ
ij (x)πα(x)πβ(x)

 ζj1(x)
for any i = 1, . . . , N . With (1.6), we use the left-hand side of (4.12) as follows:

λ|ζ1(x)− ζ1(y)|2|π(y)|2

≤
∑

1≤i,j≤N

[
ζi1(y)− ζi1(x)

]  ∑
1≤α,β≤N

Aαβ
ij (y)πα(y)πβ(y)

[ζj1(y)− ζj1(x)
]

≤ |ζ1(x)− ζ1(y)|
∑

1≤i≤N

∣∣∣∣∣∣
∑

1≤j≤N

 ∑
1≤α,β≤n

Aαβ
ij (y)πα(y)πβ(y)

[ζj1(y)− ζj1(x)
]∣∣∣∣∣∣ ,

which implies that

(4.13)

λ|ζ1(x)− ζ1(y)||π(y)|2

≤
∑

1≤i≤N

∣∣∣∣∣∣
∑

1≤j≤N

 ∑
1≤α,β≤n

Aαβ
ij (y)πα(y)πβ(y)

[ζj1(y)− ζj1(x)
]∣∣∣∣∣∣ .

We next estimate the right-hand side of (4.12). With (4.11), one can prove
that ∣∣∣∣∣∣

∑
1≤j≤N

∑
1≤α,β≤n

[
Aαβ

ij (y)πα(y)πβ(y)ζ
j
1(y)−Aαβ

ij (x)πα(x)πβ(x)ζ
j
1(x)

]∣∣∣∣∣∣
≤ c|π(y)|

[
|U(y)− U(x)|+ |F (y)− F (x)|

]
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+ c
[
|U(x)|+ |F (x)|

]
|π(x)− π(y)|

+ c
[
|U(x)|+ |F (x)|

]
|π(y)|

∑
1≤i,j≤N

∑
1≤α,β≤n

∣∣∣Aαβ
ij (y)−Aαβ

ij (x)
∣∣∣

for any i = 1, . . . , N . Since π1 = −1, one can check from (1.7) that∣∣∣∣∣∣
∑

1≤j≤N

∑
1≤α,β≤n

[
Aαβ

ij (x)πα(x)πβ(x)−Aαβ
ij (y)πα(y)πβ(y)

]
ζj1(x)

∣∣∣∣∣∣
≤ c

∑
1≤i,j≤N

∑
1≤α,β≤n

∣∣∣Aαβ
ij (x)−Aαβ

ij (y)
∣∣∣ |π(x)||π(y)|

+ c |π(x)− π(y)|
[
|π(x)|+ |π(y)|

]
|ζ1(x)|

for any i = 1, . . . , N . In view of Lemma 4.1, we have that

(4.14) |ζ1(x)| ≤ |π(x)||ζ1(x)| ≤ c(n,N, λ,Λ)
[
|U(x)|+ |F (x)|

]
.

By applying the above three estimates and that π(x) = π(x)− π(y) + π(y) to
(4.12), we get that∣∣∣∣∣∣

∑
1≤j≤N

 ∑
1≤α,β≤n

Aαβ
ij (y)πα(y)πβ(y)

[ζj1(y)− ζj1(x)
]∣∣∣∣∣∣

≤ c|π(y)| [|U(y)− U(x)|+ |F (y)− F (x)|]

+ c
[
|U(x)|+ |F (x)|

] [
|π(y)| |π(x)− π(y)|+ |π(x)− π(y)|2

]
+ c
[
|U(x)|+ |F (x)|

]|π(y)| ∑
1≤i,j≤N

∑
1≤α,β≤n

∣∣∣Aαβ
ij (y)−Aαβ

ij (x)
∣∣∣


for any i = 1, . . . , N . Since π(y) =
(
− 1, π2(y), . . . , πn(y)

)
, we find from (4.13)

that

(4.15)

|π(y)||ζ1(x)− ζ1(y)|

≤ c
[
|U(y)− U(x)|+ |F (y)− F (x)|

]
+ c
[
|U(x)|+ |F (x)|

] [
|π(x)− π(y)|+ |π(x)− π(y)|2

]
+ c
[
|U(x)|+ |F (x)|

] ∑
1≤i,j≤N

∑
1≤α,β≤n

∣∣∣Aαβ
ij (y)−Aαβ

ij (x)
∣∣∣ .

Moreover, combining (4.10), (4.14) and (4.15), we discover that

|ζβ(y)− ζβ(x)| ≤ |U(y)− U(x)|+ |π(y)− π(x)||ζ1(x)|+ |π(y)||ζ1(y)− ζ1(x)|

≤ c
[
|U(y)− U(x)|+ |F (y)− F (x)|

]
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+ c
[
|U(x)|+ |F (x)|

] [
|π(x)− π(y)|+ |π(x)− π(y)|2

]
+ c
[
|U(x)|+ |F (x)|

] ∑
1≤i,j≤N

∑
1≤α,β≤n

∣∣∣Aαβ
ij (y)−Aαβ

ij (x)
∣∣∣

for any β = 2, . . . , n. With |π(y)| ≥ 1, this and (4.15) complete the proof. □

5. Excess decay estimates

We obtain the desired excess decay estimates in this section. For the first
subsection, we consider the case when |π′| decays with respect to the size of the
cube and the coefficients are piecewise constant. Then in the next subsection,
we consider the case when |π′| has no decay assumption and the coefficients
are piecewise constant. For the last subsection, we handle the case when the
coefficients are piecewise Hölder continuous with no decay assumption on |π′|
by using the perturbation argument.

5.1. Piecewise constant coefficients with decay assumption

Choose a size τ ∈ (0, R]. For a composite cube (Qτ , {φk : k ∈ K+}), let π
be the derivative of the naturally induced flow π : Qτ → Rn in Definition 1.4.
Then

π = (−1, π′) = (−1, π2, . . . , πn),

where

πα(x) = Dαφk+1(x
′) · Tk(x) +Dαφk(x

′) · [1− Tk(x)] in Qk
τ

for any k ∈ K and α ∈ {2, . . . , n}. For some universal constant ν ≥ 1 which
will be determined later, we also assume an decay of π′ that

(5.1) |π′(0)| = 0 and |π′| ≤ ν
( ρ
R

)2µ
in Qρ

for any 0 < ρ ≤ τ .
For this subsection, we employ the letter c ≥ 1 to denote any constants that

can be explicitly computed in terms such as n, N , λ, Λ, κ, Rγ supk∈K+
[Dx′φk]Cγ(Q′

τ )

and the number of elements in the set K.
We first handle the case when the coefficients are piecewise constants. For

the constants Aαβ
ij,k, F

i
α,k (1 ≤ α, β ≤ n, 1 ≤ i, j ≤ N, k ∈ K) satisfying that

(5.2) λ|ξ|2 ≤ Aαβ
ij,kξ

i
αξ

j
β and

∣∣∣Aαβ
ij,k

∣∣∣ ≤ Λ
(
ξ ∈ RNn

)
,

we define Aαβ
ij , F

i
α (1 ≤ α, β ≤ n, 1 ≤ i, j ≤ N) as

(5.3) Aαβ
ij (x) =

∑
k∈K

Aαβ
ij,kχQk

τ
and F i

α(x) =
∑
k∈K

F i
α,kχQk

τ
.

We remark that Aαβ
ij and F i

α (1 ≤ α, β ≤ n, 1 ≤ i, j ≤ N) are constants in

each Qk
τ (k ∈ K). Then one can check from (5.2) that

(5.4) λ|ξ|2 ≤ Aαβ
ij (x)ξiαξ

j
β and

∣∣Aαβ
ij (x)

∣∣ ≤ Λ
(
x ∈ Qτ , ξ ∈ RNn

)
.
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Let w be a weak solution of

(5.5) Dα

[
Aαβ

ij (x)Dβw
j
]
= DαF

i
α in Qτ .

By using the Gehring-Giaquinta-Modica type inequality, see for instance [5,
Theorem 5.6], one can prove that

(5.6)

−
∫
Q θ

2

|Dw|2+σ dx

 2
2+σ

≤ c

(
−
∫
Qθ

|Dw|2 dx+ ∥F∥2L∞(Qθ)

)
(θ ∈ (0, τ ])

for some small universal constant σ ∈ (0, 1]. We define W : Qτ → RNn as

W =
(
W 1, . . . ,WN

)T
, where

(5.7) W i =

−
∑

1≤j≤N

∑
1≤β≤n

A1β
ij Dβw

j

+ F i
1

 , Dx′wi


for any 1 ≤ i ≤ N .

Fix θ ∈ (0, τ ]. For each k ∈ K+, one can choose z′k ∈ Q′
θ so that

(5.8) φk(z
′
k) ≤ φk+1(z

′
k+1) (k ∈ K),

and

(5.9) (φk(z
′
k), z

′
k) ∈ Qθ if Qθ ∩ {(φk(x

′), x′) : x′ ∈ Q′
θ} ≠ ∅ (k ∈ K+).

Set

(5.10) zk = (φk(z
′
k), z

′
k).

Then by (5.8) and (5.9),

(5.11) z1k ≤ z1k+1 (k ∈ K).

It follows from the definition of π′ in Definition 1.4, (5.1) and (5.9) that

(5.12) zk ∈ Qθ =⇒ |Dx′φk(z
′
k)| = |π′(φk(z

′
k), z

′
k)| = |π′(zk)| ≤ ν

(
θ

R

)2µ

.

Since Dx′φk ∈ Cγ (Q′
θ) (k ∈ K+) and 2µ = γ

γ+1 in (1.8), we discover that

R2µ [Dx′φk]C2µ(Q′
θ)

≤ cRγ [Dx′φk]Cγ(Q′
θ)
. So we find from (5.9) and (5.12)

that

(5.13) Qθ ∩ {(φk(x
′), x′) : x′ ∈ Q′

θ} ≠ ∅ =⇒ |Dx′φk| ≤ ν

(
θ

R

)2µ

in Q′
θ

for any k ∈ K+.

We define Āαβ
ij , F̄

i
α (1 ≤ α, β ≤ n, 1 ≤ i, j ≤ N) as

(5.14)

Āαβ
ij (x1) =

∑
k∈K

Aαβ
ij,kχz1

k<x1≤z1
k+1

and

F̄ i
α(x

1) =
∑
k∈K

F i
α,kχz1

k<x1≤z1
k+1

in Qθ.
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Then one can check from (5.2) that

(5.15) λ|ξ|2 ≤ Āαβ
ij (x1)ξiαξ

j
β and

∣∣Āαβ
ij (x1)

∣∣ ≤ Λ
(
x1 ∈ (−θ, θ), ξ ∈ RNn

)
.

Also one can check from (5.9) and (5.11) that

(5.16)
∥∥F̄∥∥

L∞(Qθ)
≤
∥∥F∥∥

L∞(Qθ)
,

by using that

Qk
θ = ∅ =⇒

{
(x1, x′) ∈ Qθ : z1k < x1 ≤ z1k+1

}
= ∅.

With (5.10) and (5.13), one can compare Aαβ
ij and F i

α(x) with Ā
αβ
ij and F̄ i

α(x)
respectively:

(5.17)
∣∣∣{x ∈ Qθ : Āαβ

ij ̸= Aαβ
ij

}∣∣∣+ ∣∣{x ∈ Qθ : F̄ i
α ̸= F i

α

}∣∣ ≤ cν

(
θ

R

)2µ

θn.

Let h be the weak solution of

(5.18)

{
Dα

[
Āαβ

ij (x1)Dβh
j
]

= DαF̄
i
α(x

1) in Qθ,

h = w on ∂Qθ.

Then set H : Qθ → RNn as H =
(
H1, . . . ,HN

)T
, where

(5.19) Hi =

−
∑

1≤j≤N

∑
1≤β≤n

Ā1β
ij Dβh

j

+ F̄ i
1

 , Dx′hi


for any 1 ≤ i ≤ N .

Lemma 5.1. Suppose (5.1), (5.2) and that Dw ∈ L2+σ(Qθ) for some σ ∈
(0,∞]. Then for H in (5.19), we have that

(5.20)

−
∫
Qθ

|W −H|2dx

≤ cν
σ

2+σ

(
θ

R

) 2µσ
2+σ

[(
−
∫
Qθ

|Dw|2+σdx

) 2
2+σ

+ ∥F∥2L∞(Qθ)

]
.

Proof. We first estimate Dw−Dh. We test (5.5) and (5.18) by w−h in Qθ to
find that

−
∫
Qθ

〈
Āαβ

ij

[
Dβw

j −Dβh
j
]
, Dαw

i −Dαh
i
〉
dx

= −
∫
Qθ

〈[
Āαβ

ij −Aαβ
ij

]
Dβw

j , Dαw
i −Dαh

i
〉
+
〈
F i
α − F̄ i

α, Dαw
i −Dαh

i
〉
dx.

By Young’s inequality, we obtain from (5.15) that

(5.21)

−
∫
Qθ

∣∣Dw −Dh
∣∣2dx

≤ c

[
−
∫
Qθ

∣∣∣Āαβ
ij −Aαβ

ij

∣∣∣2 |Dw|2 dx+ −
∫
Qθ

∣∣F̄ i
α − F i

α

∣∣2 dx] .
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By Hölder’s inequality, we obtain that

−
∫
Qθ

∣∣∣Āαβ
ij −Aαβ

ij

∣∣∣2 |Dw|2 dx
≤

[
−
∫
Qθ

∣∣∣Āαβ
ij −Aαβ

ij

∣∣∣ 2(2+σ)
σ

] σ
2+σ [

−
∫
Qθ

|Dw|2+σ dx

] 2
2+σ

.

So we find from (5.15) and (5.17) that

(5.22)

−
∫
Qθ

∣∣∣Āαβ
ij −Aαβ

ij

∣∣∣2 |Dw|2 dx
≤ cν

σ
2+σ

(
θ

R

) 2µσ
2+σ

(
−
∫
Qθ

|Dw|2+σ dx

) 2
2+σ

.

In view of (5.17), we obtain that

(5.23)

∫
Qθ

∣∣F̄ i
α − F i

α

∣∣2 dx ≤
∫
{x∈Qθ:F ̸=F̄}

∣∣F̄ − F
∣∣2 dx

≤
∣∣{x ∈ Qθ : F ̸= F̄

}∣∣ σ
2+σ

(∫
Qθ

∣∣F̄ i
α − F i

α

∣∣2+σ
) 2

2+σ

≤ cν
σ

2+σ

(
θ

R

) 2µσ
2+σ

θn
[∥∥F̄∥∥2

L∞(Qθ)
+ ∥F∥2L∞(Qθ)

]
.

With (5.16), it follows from (5.21), (5.22) and (5.23) that

(5.24)

−
∫
Qθ

|Dw −Dh|2 dx

≤ cν
σ

2+σ

(
θ

R

) 2µσ
2+σ

[(
−
∫
Qθ

|Dw|2+σ dx

) 2
2+σ

+ ∥F∥2L∞(Qθ)

]
.

We obtain from (5.22) that

(5.25)

∫
Qθ

∣∣∣Ā1β
ij Dβw

j −A1β
ij Dβw

j
∣∣∣2 dx

≤ c−
∫
Qθ

∣∣∣Āαβ
ij −Aαβ

ij

∣∣∣2 |Dw|2 dx
≤ cν

σ
2+σ

(
θ

R

) 2µσ
2+σ

(
−
∫
Qθ

|Dw|2+σdx

) 2
2+σ

for any 1 ≤ β ≤ n and 1 ≤ i, j ≤ N . With (5.7) and (5.19), we have from
(5.24) and (5.25) that

−
∫
Qθ

|W −H|2 dx ≤ cν
σ

2+σ

(
θ

R

) 2µσ
2+σ

[(
−
∫
Qθ

|Dw|2+σ dx

) 2
2+σ

+ ∥F∥2L∞(Qθ)

]
,
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where H : Qθ → RN is defined in (5.19). □

Lemma 5.2. Suppose (5.1), (5.2) and that Dw ∈ L2+σ(Qθ) for some σ ∈
(0,∞]. Let w be the weak solution of (5.5). Then

−
∫
Qρ

∣∣W − (W )Qρ

∣∣2 dx
≤ c

(ρ
θ

)
−
∫
Qθ

|W − (W )Qθ
|2 dx

+ cν
σ

2+σ

(
θ

R

) 2µσ
2+σ

(
θ

ρ

)n
[(

−
∫
Qθ

|Dw|2+σ dx

) 2
2+σ

+ ∥F∥2L∞(Qθ)

]
for any 0 < ρ ≤ θ ≤ τ .

Proof. Let h be the weak solution of (5.18) and setH as in (5.19). Since F̄ i
α(x

1)
(1 ≤ α ≤ n, 1 ≤ i ≤ N) are independent of x′-variables, (5.18) yields that

(5.26) Dα

[
Āαβ

ij (x1)Dβh
j
]
= D1F̄

i
1(x

1) in Qθ.

Apply Lemma 3.5 to h in (5.26) and H in (5.19) instead of w in (3.9) and W
in (3.10), respectively. Then we have that

−
∫
Qρ

∣∣H − (H)Qρ

∣∣2 dx ≤ c
(ρ
θ

)
−
∫
Qθ

|H − (H)Qθ
|2 dx.

It follows from Lemma 5.1 that

−
∫
Qρ

∣∣W − (W )Qρ

∣∣2 dx
≤ c

(ρ
θ

)
−
∫
Qθ

|W − (W )Qθ
|2 dx

+ cν
σ

2+σ

(
θ

R

) 2µσ
2+σ

(
θ

ρ

)n
[(

−
∫
Qθ

|Dw|2+σ dx

) 2
2+σ

+ ∥F∥2L∞(Qθ)

]
.

□

Lemma 5.3. There exists a constant ε ∈ (0, 1] such that if ν
(
τ
R

)2µ ≤ ε, then

−
∫
Qρ

|W |2 dx ≤ c

[
−
∫
Qτ

|W |2 dx+ ∥F∥2L∞(Qτ )

]
for any 0 < ρ ≤ τ . Here, ε ∈ (0, 1] depends only on the constants n, N , λ, Λ,
Rγ supk∈K+

[Dx′φk]Cγ(Q′
τ )

and the number of the elements in the set K.

Proof. The proof is similar to that in the paper [8,15,18], but we give the proof
for the sake of the completeness.
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By applying Lemma 5.2 to (5.5) and applying Lemma 4.1 to Dw and W
instead of ζ and U with π = (−1, 0, . . . , 0), we find that

(5.27)

−
∫
Qρ

∣∣W − (W )Qρ

∣∣2 dx
≤ c

(ρ
θ

)
−
∫
Qθ

|W − (W )Qθ
|2 dx

+ cν
σ

2+σ

(
θ

R

) 2µσ
2+σ

(
θ

ρ

)n(
−
∫
Qθ

|W |2 dx+ ∥F∥2L∞(Qθ)

)
for any 0 < ρ ≤ θ ≤ τ , which implies that(

−
∫
Qρ

∣∣W − (W )Qρ

∣∣2 dx) 1
2

≤ c1

(ρ
θ

) 1
2

(
−
∫
Qθ

|W − (W )Qθ
|2 dx

) 1
2

+ c1ν
σ

2(2+σ)

(
θ

R

) µσ
2+σ

(
θ

ρ

)n
2

[(
−
∫
Qθ

|W |2 dx
) 1

2

+ ∥F∥L∞(Qτ )

]
.

For a small constant δ ∈ (0, 1) chosen to be later, let τi = δiτ . By letting
ρ = τi+1 and θ = τi,(

−
∫
Qτi+1

∣∣∣W − (W )Qτi+1

∣∣∣2 dx) 1
2

≤ c1δ
1
2

(
−
∫
Qτi

∣∣W − (W )Qτi

∣∣2 dx) 1
2

+ c1δ
−n

2 ν
σ

2(2+σ)

(τi
R

) µσ
2+σ

(−
∫
Qτi

|W |2 dx

) 1
2

+ ∥F∥L∞(Qτ )


for any i = 0, 1, 2, . . .. Choose the universal constant δ ∈ (0, 1) so that c1δ

1
2 ≤

1
4 . Since the constant σ ∈ (0, 1] chosen in (5.6) is universal, select the universal
constant ε ∈ (0, 1] so that

20c1δ
−nε

σ
2(2+σ)

1− δ
µσ

2(2+σ)

≤ 1,

which implies that

20c1ν
σ

2(2+σ)

( τ
R

) µσ
2+σ

δ−n

j∑
i=0

δ
µσi
2+σ ≤ 20c1δ

−nν
σ

2(2+σ)

1− δ
µσ

2(2+σ)

( τ
R

) µσ
2+σ

(5.28)
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≤ 20c1δ
−nε

σ
2(2+σ)

1− δ
µσ

2(2+σ)

≤ 1

for any j = 0, 1, 2, . . .. Since(
−
∫
Qτi

|W |2 dx

) 1
2

≤

(
−
∫
Qτi

∣∣W − (W )Qτi

∣∣2 dx) 1
2

+
∣∣(W )Qτi

∣∣ ,
we have that (

−
∫
Qτi+1

∣∣∣W − (W )Qτi+1

∣∣∣2 dx) 1
2

≤ 1

2

(
−
∫
Qτi

∣∣W − (W )Qτi

∣∣2 dx) 1
2

+ c1δ
−n

2 ν
σ

2(2+σ)

(τi
R

) µσ
2+σ (∣∣(W )Qτi

∣∣+ ∥F∥L∞(Qτ )

)
from (5.28). By summing up over i = 0, 1, 2, . . . , j, it follows that

(5.29)

j+1∑
i=0

(
−
∫
Qτi

∣∣W − (W )Qτi

∣∣2 dx) 1
2

≤ 4

(
−
∫
Qτ0

∣∣W − (W )Qτ0

∣∣2 dx) 1
2

+ 2c1δ
−n

2 ν
σ

2(2+σ)

( τ
R

) µσ
2+σ

j∑
i=0

[
δ

µσi
2+σ

(∣∣(W )Qτi

∣∣+ ∥F∥L∞(Qτ )

)]
for any j = 0, 1, 2, . . ..

We now claim that

(5.30)
∣∣∣(W )Qτj

∣∣∣ ≤ 10δ−n

(−
∫
Qτ0

|W |2 dx

) 1
2

+ ∥F∥L∞(Qτ )

 (j = 0, 1, 2, . . .).

We prove the claim (5.30) by induction. First, we can easily check that (5.30)
holds when j = 0. Next by an inductive assumption, suppose that (5.30) holds
for 0, 1, . . . , j. From the inequality∣∣∣(W )Qτj+1

− (W )Qτ0

∣∣∣ ≤ j∑
i=0

−
∫
Qτi+1

∣∣W − (W )Qτi

∣∣ dx
≤ δ−

n
2

j+1∑
i=0

(
−
∫
Qτi

∣∣W − (W )Qτi

∣∣2 dx) 1
2

,



662 Y. KIM AND P. SHIN

and (5.29), we see that∣∣∣(W )Qτj+1
− (W )Qτ0

∣∣∣
≤ 4δ−

n
2

(
−
∫
Qτ0

∣∣W − (W )Qτ0

∣∣2 dx) 1
2

+ 2c1δ
−nν

σ
2(2+σ)

( τ
R

) µσ
2+σ

j∑
i=0

[
δ

µσi
2+σ

(∣∣(W )Qτi

∣∣+ ∥F∥L∞(Qτ )

)]
.

With the inductive assumption (5.30), we have that

j∑
i=0

δ
µσi
2+σ

∣∣(W )Qτi

∣∣ ≤ 10δ−n

(
j∑

i=0

δ
µσi
2+σ

)(−
∫
Qτ0

|W |2 dx

) 1
2

+ ∥F∥L∞(Qτ )

 .
We also note that

(5.31)

(
−
∫
Qτ0

∣∣W − (W )Qτ0

∣∣2 dx) 1
2

≤ 2

(
−
∫
Qτ0

|W |2 dx

) 1
2

.

Therefore, we have from (5.28) that∣∣∣(W )Qτj+1
− (W )Qτ0

∣∣∣
≤ 8δ−

n
2

(
−
∫
Qτ0

|W |2 dx

) 1
2

+ δ−n

(−
∫
Qτ0

|W |2 dx

) 1
2

+ ∥F∥L∞(Qτ )

 .
We now remember that δ ∈ (0, 1] to get the desired (5.30).

Since τi = δiτ , we find from (5.28), (5.29), (5.30) and (5.31) that

−
∫
Qτj

∣∣∣W − (W )Qτj

∣∣∣2 dx ≤ c

[
−
∫
Qτ0

|W |2 dx+ ∥F∥2L∞(Qτ )

]
(j = 0, 1, 2, . . .),

because δ ∈ (0, 1) was chosen universal. So by (5.30) and that τi = δiτ (i =
0, 1, . . .),

−
∫
Qτj

|W |2 dx ≤ c

[
−
∫
Qτ

|W |2 dx+ ∥F∥2L∞(Qτ )

]
(j = 0, 1, 2, . . .).

Since δ ∈ (0, 1) was a universal constant, we find that

−
∫
Qρ

|W |2 dx ≤ c

[
−
∫
Qτ

|W |2 dx+ ∥F∥2L∞(Qτ )

]
for any 0 < ρ ≤ τ and the lemma follows. □
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5.2. Linear coordinate transformation

To apply Lemma 5.2 and Lemma 5.3 for the general situation, we use a
linear coordinate transformation. To use a coordinate transformation Ψ, we
define ‘the derivative of the naturally induced flow respect to Ψ’ in Definition
5.4 corresponding to ‘the derivative of the naturally induced flow’ in Definition
1.4.

For this subsection, we employ the letter c ≥ 1 to denote any constants that
can be explicitly computed in terms n, supk∈K+

∥Dx′φk∥L∞(Q′
r)
, Rγ supk∈K+

[Dx′φk]Cγ(Q′
r)

and the number of the element in the set K.

Definition 5.4. Suppose that (Qr, {φk : k ∈ K+}) is a composite cube. For
any Qτ (z) ⊂ Qr and ζ ′ ∈ Rn−1, let Ψ : Qτ (z) → Rn be a linear coordinate
transformation defined as

Ψ(x) =
(
x1 − z1 − ζ ′ · (x′ − z′), x′ − z′

)
.

Let y = Ψ(x) be the new coordinate system. Then we define the derivative of
the naturally induced flow with respect to Ψ as follows.

Let the new graph {(φ̃k(y
′), y′) : y′ ∈ Q′

τ} be the transformation of the graph
{(φk(x

′), x′) : x′ ∈ Q′
τ (z)} under the coordinate transformation Ψ. For any

k ∈ K, set T̃k : Ψ (Qτ (z)) → [0, 1] as

(5.32) T̃k(y
1, y′) =

y1 − φ̃k(y
′)

φ̃k+1(y′)− φ̃k(y′)
in Ψ

(
Qk

τ (z)
)
.

Then the following vector-valued function π̃ : Ψ (Qτ (z)) → Rn

π̃ = (−1, π̃′) = (π̃1, π̃2, . . . , π̃n)

is called the derivative of the naturally induced flow respect to Ψ, where π̃1 =
−1 and

(5.33) π̃α(y) :=Dyα φ̃k+1(y
′) · T̃k(y)+Dyα φ̃k(y

′) ·
[
1− T̃k(y)

]
in Ψ

(
Qk

τ (z)
)

for any k ∈ K and α ∈ {2, . . . , n}.

To apply the coordinate transformation, we prove the following lemma. We
remark that in the following lemma, Ψ only depends on the point z ∈ Qr and
is independent of the size τ .

Lemma 5.5. Suppose that (Qr, {φk : k ∈ K+}) is a composite cube with the
condition that

(5.34)

|Dx′φl(x
′)−Dx′φk(x

′)|

≤ κ

(
|φl(x

′)− φk(x
′)|

R

)2µ

(x′ ∈ Q′
r, k, l ∈ K+)

and

(5.35) |Dx′φk(x
′)−Dx′φk(y

′)| ≤ κ

(
|x′ − y′|

R

)2µ

(x′, y′ ∈ Q′
r, k ∈ K+)
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for some constant κ > 0. For Qτ (z) ⊂ Qr and the derivative of the natu-
rally induced flow π : Qr → Rn, let Ψ : Qτ (z) → Rn be a linear coordinate
transformation defined as

Ψ(x) =
(
x1 − z1 − π′(z) · (x′ − z′), x′ − z′

)
,

and π̃ : Ψ (Qτ (z)) → Rn be the derivative of the naturally induced flow with
respect to Ψ. Then

|π̃′(0)| = 0 and |π̃′| ≤ cκ
( ρ
R

)2µ
in Qρ

for any Qρ ⊂ Ψ(Qτ (z)).

Proof. Let the new graph {(φ̃k(y
′), y′) : y′ ∈ Q′

τ} be the transformation of the
graph {(φk(x

′), x′) : x′ ∈ Q′
τ (z)} under the linear coordinate transformation Ψ.

Then one can check that

(5.36) φ̃k(y
′) = φk (y

′ + z′)− z1 − π′(z) · y′.

We claim that

(5.37) π̃α(y) = πα
(
y1 + z1 + π′(z) · y′, y′ + z′

)
− πα(z)

for any y ∈ Ψ(Qτ (z)) and α ∈ {2, . . . , n}. Fix y = (y1, y′) ∈ Ψ
(
Qk

τ (z)
)

(k ∈ K). In view of (5.36), we obtain that

Dyα φ̃k(y
′) = Dxαφk(y

′ + z′)− πα(z) (y′ ∈ Q′
τ , k ∈ K+, α ∈ {2, . . . , n}) .

So by (5.32) and (5.33),

π̃α(y) =
[Dxαφk+1(y

′ + z′)− πα(z)][y
1 − φ̃k(y

′)]

φ̃k+1(y′)− φ̃k(y′)

+
[Dxαφk(y

′ + z′)− πα(z)][φ̃k+1(y
′)− y1]

φ̃k+1(y′)− φ̃k(y′)

=
Dxαφk+1(y

′ + z′) [y1 − φ̃k(y
′)]

φ̃k+1(y′)− φ̃k(y′)
+
Dxαφk(y

′ + z′) [φ̃k+1(y
′)− y1]

φ̃k+1(y′)− φ̃k(y′)

− πα(z)

for any α ∈ {2, . . . , n}. It follows from (5.36) that

(5.38)

π̃α(y) =
Dxαφk+1(y

′ + z′)
[
y1 + z1 + π′(z) · y′ − φk(y

′ + z′)
]

φk+1(y′ + z′)− φk(y′ + z′)

+
Dxαφk(y

′ + z′)
[
φk+1(y

′ + z′)− y1 − z1 − π′(z) · y′
]

φk+1(y′ + z′)− φk(y′ + z′)

− πα(z)

for any α ∈ {2, . . . , n}. Since y ∈ Ψ
(
Qk

τ (z)
)
, we have that

Ψ−1(y) =
(
y1 + z1 + π′(z) · y′, y′ + z′

)
∈ Qk

τ (z).
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Then from (1.5), we obtain that

πα
(
y1 + z1 + π′(z) · y′, y′ + z′

)
=
Dxαφk+1(y

′ + z′)
[
y1 + z1 + π′(z) · y′ − φk(y

′ + z′)
]

φk+1(y′ + z′)− φk(y′ + z′)

+
Dxαφk(y

′ + z′)
[
φk+1(y

′ + z′)− y1 − z1 − π′(z) · y′
]

φk+1(y′ + z′)− φk(y′ + z′)

for any α ∈ {2, . . . , n}. So by (5.38),

(5.39) π̃α(y) = πα
(
y1 + z1 + π′(z) · y′, y′ + z′

)
− πα(z)

for any α ∈ {2, . . . , n}. Thus

(5.40) π̃α(0) = 0 (α ∈ {2, . . . , n}).

Since y = (y1, y′) ∈ Ψ
(
Qk

τ (z)
)
(k ∈ K) was arbitrarily chosen, the claim (5.37)

holds. By comparing (5.34) and (5.35) with (2.5) and (2.6) respectively, we
apply Lemma 2.4 to π and (5.37). Then we obtain from (5.39) that

(5.41)

|π̃′(y)| =
∣∣π′ (y1 + z1 + π′(z) · y′, y′ + z′

)
− π′(z)

∣∣
≤ cκ

(∣∣(y1 + π′(z) · y′, y′
)∣∣

R

)2µ

for any y ∈ Ψ(Qτ (z)). From (1.5), we have that

|π′(z)| ≤ 2 sup
k∈K+

∥Dx′φk∥L∞(Q′
r)

≤ c.

So by (5.40) and (5.41),

|π̃′(0)| = 0 and |π̃′| ≤ cκ
( ρ
R

)2µ
in Qρ

for any Qρ ⊂ Ψ(Qτ (z)). □

5.3. Piecewise constant coefficients with no decay assumption

For the composite cube (Qr, {φk : k ∈ K+}), let π be the derivative of the
naturally induced flow π : Qr → Rn. Then

π = (−1, π′) = (−1, π2, . . . , πn),

where

πα(x) = Dαφk+1(x
′) · Tk(x) +Dαφk(x

′) · [1− Tk(x)] in Qk
r

for any k ∈ K and α ∈ {2, . . . , n}. We also assume that

(5.42)

|Dx′φl(x
′)−Dx′φk(x

′)|

≤ κ

(
|φl(x

′)− φk(x
′)|

R

)2µ

(x′ ∈ Qr, k, l ∈ K+) ,
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and

(5.43) |Dx′φk(x
′)−Dx′φk(y

′)| ≤ κ

(
|x′ − y′|

R

)2µ

(x′, y′ ∈ Q′
r, k ∈ K+)

for some constant κ > 0.
For this subsection, we employ the letter c ≥ 1 to denote any constants that

can be explicitly computed in terms such as n, N , λ, Λ, supk∈K+
∥Dx′φk∥L∞(Q′

r)
,

Rγ supk∈K+
[Dx′φk]Cγ(Q′

r)
and the number of elements in the set K.

As in Subsection 5.1, we handle the case when the coefficients are piecewise

constants. For the constants Aαβ
ij,k, F

i
α,k (1 ≤ α, β ≤ n, 1 ≤ i, j ≤ N, k ∈ K)

satisfying that

(5.44) λ|ξ|2 ≤ Aαβ
ij,kξ

i
αξ

j
β and

∣∣∣Aαβ
ij,k

∣∣∣ ≤ Λ
(
ξ ∈ RNn

)
,

we define Aαβ
ij , F

i
α (1 ≤ α, β ≤ n, 1 ≤ i, j ≤ N) as

(5.45) Aαβ
ij (x) =

∑
k∈K

Aαβ
ij,kχQk

r
and F i

α(x) =
∑
k∈K

F i
α,kχQk

r
in Qr.

We remark that Aαβ
ij and F i

α (1 ≤ α, β ≤ n, 1 ≤ i, j ≤ N) are constants in

each Qk
r (k ∈ K). Then one can check from (5.45) that

(5.46) λ|ξ|2 ≤ Aαβ
ij (x)ξiαξ

j
β and

∣∣Aαβ
ij (x)

∣∣ ≤ Λ
(
x ∈ Qr, ξ ∈ RNn

)
.

Under the assumption (5.42), (5.44) and (5.45), let v be a weak solution of

(5.47) Dα

[
Aαβ

ij (x)Dj
βv
]
= DαF

i
α in Qr.

Then we define V : Qr → RNn as V =
(
V 1, . . . , V N

)T
, where

(5.48) V i =

 ∑
1≤α≤n

πα

 ∑
1≤j≤N

∑
1≤β≤N

Aαβ
ij Dxβvj

− F i
α

 , Dx′vi + π′Dx1vi


for any 1 ≤ i ≤ N . In this subsection, we obtain the Lipschitz estimate of V
in Q r

2
and the excess decay estimate of V .

Lemma 5.6. Suppose that Qτ (z) ⊂ Qr. There exists a small universal con-

stant ε ∈ (0, 1] such that if κ
(
r
R

)2µ ≤ ε and z is a Lebesgue point of V , then

|V (z)|2 ≤ c

[
−
∫
Qτ (z)

|V |2 dx+ ∥F∥2L∞(Qτ (z))

]
.

Here, ε ∈ (0, 1] depends only on n, N , λ, Λ, the number of the element in the
set K, supk∈K+

∥Dx′φk∥L∞(Q′
r)

and Rγ supk∈K+
[Dx′φk]Cγ(Q′

r)
.

Proof. Define a linear coordinate transformation Ψ : Qτ (z) → Rn with Φ =
Ψ−1 as

(5.49) Ψ(x) =
(
x1 − z1 − π′(z) · (x′ − z′), x′ − z′

)
.
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Let y = Ψ(x) be the new coordinate system. Then for any α, β ∈ {2, . . . , n},

(5.50)
∂y1

∂x1
= 1,

∂y1

∂xβ
= −πβ(z),

∂yα

∂x1
= 0,

∂yα

∂xβ
= δαβ ,

and

(5.51)
∂x1

∂y1
= 1,

∂x1

∂yβ
= πβ(z),

∂xα

∂y1
= 0,

∂xα

∂yβ
= δαβ .

From (1.5), we have that |π′(z)| ≤ 2 supk∈K+
∥Dx′φk∥L∞(Q′

r)
. So for a suf-

ficiently small constant δ = δ
(
n, supk∈K+

∥Dx′φk∥L∞(Q′
r)

)
∈ (0, 1], we have

from (5.49) that

(5.52) Qδρ ⊂ Ψ(Qρ(z)) and Qδρ(z) ⊂ Φ(Qρ)
(
ρ ∈ (0, τ ]

)
.

One can check from (5.47) and (5.52) that

(5.53) Dyα

[
Ãαβ

ij (y)Dyβw
]
= DyαGi

α in Qδτ ⊂ Ψ(Qτ (z)) ,

where

(5.54)

Ãαβ
ij =

∑
s,t

∂yα

∂xs
∂yβ

∂xt
·Ast

ij ,

Dyβw =
∑
t

∂xt

∂yβ
·Dxtv and

Gi
α =

∑
s

∂yα

∂xs
· F i

s

for any 1 ≤ α, β ≤ n and 1 ≤ i, j ≤ N . In view of (5.45) and (5.46),

(5.55) Ãαβ
ij (y) =

∑
k∈K

∑
1≤s,t≤n

∂yα

∂xs
∂yβ

∂xt
·Ast

ij,kχΨ(Qk
τ (z))

in Ψ(Qτ (z)),

and

(5.56) Gi
α(y) =

∑
k∈K

∑
1≤s≤n

∂yα

∂xs
· F i

s,kχΨ(Qk
τ (z))

in Ψ(Qτ (z)).

Since Ψ is a linear coordinate transformation, ∂y
∂x and ∂x

∂y are constants as in

(5.50) and (5.51). So by (5.55) and (5.56), one can check that Ãαβ
ij and F̃ i

α

(1 ≤ α, β ≤ n, 1 ≤ i, j ≤ N) become constants in each Qδτ ∩Ψ
(
Qk

τ (z)
)
for any

k ∈ K. Also one can check from (5.44), (5.50), (5.51) and (5.52) that

(5.57) c−1|ξ|2 ≤ Ãαβ
ij (y)ξiαξ

j
β and

∣∣Ãαβ
ij (y)

∣∣ ≤ c
(
y ∈ Qδτ , ξ ∈ RNn

)
,

and

(5.58)
∥∥G∥∥

L∞(Qδτ )
≤
∥∥F∥∥

L∞(Qτ (z))
.
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Let π̃ : Ψ (Qτ (z)) → Rn−1 be the derivative of the naturally induced flow with
respect to Ψ defined in Definition 5.4. In view of Lemma 5.5 and (5.52), we
obtain that

(5.59) |π̃′(0)| = 0 and |π̃′| ≤ cκ
( ρ
R

)2µ
in Qρ (⊂ Ψ(Qτ (z)))

for any 0 < ρ ≤ δτ , which corresponds to the condition (5.1) used for Lemma
5.3.

Set W : Ψ(Qr(z)) → RNn as W =
(
W 1, . . . ,WN

)T
, where

(5.60) W i =

− ∑
1≤j≤N

∑
1≤β≤n

Ã1β
ij Dyβwj

+Gi
1, Dy′wi

 (i = 1, . . . , N) .

By comparing (5.57) and (5.59) with (5.2) and (5.1) respectively, we apply
Lemma 5.3 to the size δ−1ρ and δτ . So there exists a small universal constant

ε ∈ (0, 1] such that if κ
(
r
R

)2µ ≤ ε, then

(5.61) −
∫
Qδ−1ρ(z)

|W |2 dx ≤ c

[
−
∫
Qδτ (z)

|W |2 dx+ ∥G∥2L∞(Qδτ (z))

]

for any 0 < ρ ≤ δ2τ ≤ δ2r. Set V̄ : Qτ (z) → RNn as V̄ =
(
V̄ 1, . . . , V̄ N

)T
,

where

V̄ i =

 ∑
1≤α≤N

πα(z)

 ∑
1≤j≤N

∑
1≤β≤n

Aαβ
ij Dxβvj

− F i
α

 , Dx′vi + π′(z)Dx1vi


for any 1 ≤ i ≤ N .

By comparing (5.42) and (5.43) with (2.5) and (2.6) respectively, we have
from Lemma 2.4 that π = (−1, π′) ∈ C2µ(Qr). So for V in (5.48), we have
from Lemma 4.1 that∣∣V − V̄

∣∣ ≤ c|π − π(z)|
[
|Dxv|+ |F |

]
≤ cκ

( r
R

)2µ [
|V |+ |F |

]
in Qr.

So for a sufficiently small universal constant ε ∈ (0, 1], if κ
(
r
R

)2µ ≤ ε, then

(5.62)
∣∣V̄ ∣∣+ |F | ≤ c [|V |+ |F |] ≤ c

[∣∣V̄ ∣∣+ |F |
]

in Qr.

Since π1 = −1, one can check from (5.50) and (5.51) that

V̄ i
1 =

−
∑

1≤j≤N

∑
1≤s,t≤n

∂y1

∂xs
·Ast

ijDxtvj

+
∑

1≤s≤n

∂y1

∂xs
· F i

s ,

and

V̄ i
α =

∑
1≤s≤n

∂xs

∂yβ
·Dxsvi
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for any i = 1, . . . , N and β = 2, . . . , n. So by comparing V̄ with W in (5.60),
we find from (5.54) that

(5.63) W (Ψ(x)) = V̄ (x) (x ∈ Qτ (z)) .

Since det
(

∂y
∂x

)
= 1, we find from (5.52), (5.58) and (5.63) that

−
∫
Qρ(z)

|V̄ |2 dx ≤ c−
∫
Ψ(Qρ(z))

|W |2 dy ≤ c−
∫
Qδ−1ρ

|W |2 dy,

and

−
∫
Qδτ

|W |2 dy + ∥G∥2L∞(Qδτ (z))
≤ c

[
−
∫
Φ(Qδτ )

∣∣V̄ ∣∣2 dx+ ∥F∥2L∞(Qτ (z))

]

≤ c

[
−
∫
Qτ (z)

∣∣V̄ ∣∣2 dx+ ∥F∥2L∞(Qτ (z))

]
for any 0 < ρ ≤ δ2τ . So by combining (5.61) and the above two estimates,

(5.64) −
∫
Qρ(z)

|V̄ |2 dx ≤ c

[
−
∫
Qτ (z)

∣∣V̄ ∣∣2 dx+ ∥F∥2L∞(Qτ (z))

]
for any 0 < ρ ≤ δ2τ . It follows from (5.62) that

−
∫
Qρ(z)

|V |2 dx ≤ c

[
−
∫
Qτ (z)

|V |2 dx+ ∥F∥2L∞(Qτ (z))

]
for any 0 < ρ ≤ δ2τ . Since 0 < ρ ≤ δ2τ was arbitrarily chosen and z is
Lebesgue point of V , the lemma follows. □

Lemma 5.7. For the small universal constant ε ∈ (0, 1] chosen in Lemma 5.6,

if κ
(
r
R

)2µ ≤ ε, then

∥V ∥
L∞

(
Q r

2

) ≤ c

[
−
∫
Qr

|V |2 dx+ ∥F∥2L∞(Qr)

]
.

Proof. For any Lebesgue point z ∈ Q r
2
of V , we have from Lemma 5.6 that

|V (z)|2 ≤ c

[
−
∫
Q r

2
(z)

|V |2dx+ ∥F∥2L∞(Q r
2
(z))

]

≤ c

[
−
∫
Qr(z)

|V |2 dx+ ∥F∥2L∞(Qr(z))

]
.

Since the Lebesgue point z ∈ Q r
2

of V was chosen arbitrarily, the lemma
follows. □
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Lemma 5.8. For the small universal constant ε ∈ (0, 1] chosen in Lemma 5.6,

if Qτ (z) ⊂ Qr and κ
(
r
R

)2µ ≤ ε, then

−
∫
Qρ(z)

∣∣∣V − (V )Qρ(z)

∣∣∣2 dx
≤ c

(ρ
τ

)
−
∫
Qτ (z)

∣∣∣V − (V )Qτ (z)

∣∣∣2 dx
+ cκ

( τ
R

)2µ(τ
ρ

)n
(
−
∫
Qτ (z)

|V |2 dx+ ∥F∥2L∞(Qτ (z))

)

for any 0 < ρ ≤ τ .

Proof. Assume that 0 < 2ρ ≤ δ2τ , otherwise the lemma can be easily proved
by that δ2τ < 2ρ ≤ 2τ .

By Lemma 5.7, if κ
(
r
R

)2µ ≤ ε, then

|V | ∈ L∞ (Q r
2

)
.

Set W : Ψ(Qr(z)) → RNn as in (5.60), where W =
(
W 1, . . . ,WN

)T
and

(5.65) W i =

− ∑
1≤j≤N

∑
1≤β≤n

Ã1β
ij Dyβwj

+Gi
1, Dy′wi

 (i = 1, . . . , N) .

With (5.48), we obtain from (5.54) and Lemma 4.1 that

|W (y)| ≤ c [|Dw(y)|+ |G(y)|]
≤ c [|Dv (Φ(y))|+ |F (Φ(y))|] ≤ c [|V (Φ(y))|+ |F (Φ(y))|]

for any y ∈ Ψ(Qr). So by Lemma 5.7 and (5.52),

(5.66) W ∈ L∞
(
Q δr

2

)
.

So by comparing (5.57) and (5.59) with (5.2) and (5.1) respectively, we apply
Lemma 5.2 with (5.66) (take σ = ∞ in Lemma 5.2) to the size δ−1ρ and δτ

2
instead of ρ and θ. Then

(5.67)

−
∫
Qδ−1ρ

∣∣∣W − (W )Qδ−1ρ

∣∣∣2 dy
≤ c

(ρ
τ

)
−
∫
Qδτ

|W − (W )Qδτ
|2 dy

+ cκ
( τ
R

)2µ(τ
ρ

)n(
−
∫
Qδτ

|W |2 dy + ∥G∥2L∞(Qδτ )

)
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for any 0 < ρ ≤ δ2τ
2 ≤ δ2r

4 . By repeating the proof of (5.63) in Lemma 5.6, for

V : Qτ (z) → RNn defined as V =
(
V 1, . . . , V N

)T
and

V̄ i =

 ∑
1≤α≤N

πα(z)

 ∑
1≤j≤N

∑
1≤β≤n

Aαβ
ij Dxβvj

− F i
α

 , Dx′vi + π′(z)Dx1vi

,
where 1 ≤ i ≤ N , we have that

(5.68) W (Ψ(x)) = V̄ (x) (x ∈ Qτ (z)) .

Also by repeating the proof of (5.58) and (5.62) in Lemma 5.6, we obtain that

(5.69)
∥∥G∥∥

L∞(Qδτ )
≤
∥∥F∥∥

L∞(Qτ (z))
,

and

(5.70)
∣∣V̄ ∣∣+ |F | ≤ c [|V |+ |F |] ≤ c

[∣∣V̄ ∣∣+ |F |
]

in Qr.

Since det
(

∂y
∂x

)
= 1 and δ ∈ (0, 1] is universal, one can check from (5.68) that

−
∫
Qρ(z)

∣∣∣V̄ −
(
V̄
)
Qρ(z)

∣∣∣2 dx ≤ c−
∫
Ψ(Qρ(z))

∣∣∣W − (W )Ψ(Qρ(z))

∣∣∣2 dy
≤ c−
∫
Qδ−1ρ

∣∣∣W − (W )Qδ−1ρ

∣∣∣2 dy
and

−
∫
Qδτ

∣∣∣W − (W )Qδτ

∣∣∣2 dy ≤ c−
∫
Ψ(Qτ (z))

∣∣∣W − (W )Ψ(Qτ (z))

∣∣∣2 dy
≤ c−
∫
Qτ (z)

∣∣∣V̄ −
(
V̄
)
Qτ (z)

∣∣∣2 dx.
So it follows from (5.67), (5.69) and (5.70) that

−
∫
Qρ(z)

∣∣∣V − (V )Qρ(z)

∣∣∣2 dx
≤ c

(ρ
τ

)
−
∫
Qτ (z)

∣∣∣V − (V )Qτ (z)

∣∣∣2 dx
+ cκ

( τ
R

)2µ(τ
ρ

)n
(
−
∫
Qτ (z)

|V |2 dx+ ∥F∥2L∞(Qτ (z))

)

for any 0 < ρ ≤ δ2τ
2 ≤ δ2r

4 . One can easily extend this estimate to the case
when r

2 < τ ≤ r. □
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5.4. Piecewise Hölder continuous coefficients with no decay assump-
tions

In this subsection, we obtain the corresponding result to Lemma 5.8 for
general piecewise Hölder continuous coefficients.

For the composite cube (Qr, {φk : k ∈ K+}), let π be the derivative of the
naturally induced flow π : Qr → Rn. Then

π = (−1, π′) = (−1, π2, . . . , πn),

where

πα(x) = Dαφk+1(x
′) · Tk(x) +Dαφk(x

′) · [1− Tk(x)] in Qk
r

for any k ∈ K and α ∈ {2, . . . , n}. Assume (1.6), (1.7) and that Aαβ
ij , F

i
α ∈

Cµ
(
Qk

r

)
for any k ∈ K. Also we further assume that

(5.71)

|Dx′φl(x
′)−Dx′φk(x

′)|

≤ κ

(
|φl(x

′)− φk(x
′)|

R

)2µ

(x′ ∈ Qr, k, l ∈ K+) ,

(5.72) |Dx′φk(x
′)−Dx′φk(y

′)| ≤ κ

(
|x′ − y′|

R

)2µ

(x′, y′ ∈ Q′
r, k ∈ K+) ,

and

(5.73) Rµ
[
Aαβ

ij

]
Cµ(Qk

r )
≤ κ

1
2 (1 ≤ α, β ≤ n, 1 ≤ i, j ≤ N, k ∈ K)

for some constant κ > 0.
For this subsection, we employ the letter c ≥ 1 to denote any constants that

can be explicitly computed in terms such as n, N , λ, Λ, supk∈K+
∥Dx′φk∥L∞(Q′

r)
,

Rγ supk∈K+
[Dx′φk]Cγ(Q′

r)
and the number of the element in the set K.

Let u be a weak solution of

(5.74) Dα

[
Aαβ

ij Dβu
j
]
= DαF

i
α in Qr.

Then we obtain the following lemma.

Lemma 5.9. For the small universal constant ε ∈ (0, 1] chosen in Lemma 5.6,

if κ
(
r
R

)2µ ≤ ε, then for U : Qr → RNn defined as U =
(
U1, . . . , UN

)T
and

(5.75) U i =

 ∑
1≤α≤n

πα

 ∑
1≤j≤N

∑
1≤β≤n

Aαβ
ij Dβu

j

− F i
α

 , Dx′ui + π′D1u
i

,
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where 1 ≤ i ≤ N , we have that

(5.76)

−
∫
Qρ

∣∣U − (U)Qρ

∣∣2 dx
≤ c

(ρ
τ

)
−
∫
Qτ

|U − (U)Qτ
|2 dx

+ c
( τ
R

)2µ(τ
ρ

)n(
κ−
∫
Qτ

|U |2 dx+ κ∥F∥2L∞(Qτ )
+ sup

k∈K
[F ]2Cµ(Qk

τ )

)
for any 0 < ρ ≤ τ ≤ r.

Proof. Fix 0 < ρ ≤ τ ≤ r. For any k ∈ K with Qk
τ ̸= ∅, we choose the points

zk ∈ Qk
τ . On the other-hand, for any k ∈ K with Qk

τ = ∅, let zk = 0 for the
simplicity of notation. We remark that we will focus on the set Qτ and we
don’t need to consider the set Qk

τ when Qk
τ = ∅. Set

(5.77) Āαβ
ij (x) =

∑
k∈K

Aαβ
ij (zk)χQk

τ
and F̄ i

α(x) =
∑
k∈K

F i
α,k(zk)χQk

τ
in Qτ .

Since Aαβ
ij , F

i
α ∈ Cµ

(
Qk

τ

)
for any k ∈ K, we find from (5.73) and (5.77) that

(5.78)
∥∥∥Aαβ

ij − Āαβ
ij

∥∥∥
L∞(Qτ )

≤ κ
1
2

( τ
R

)µ
and

(5.79)
∥∥F − F̄

∥∥
L∞(Qτ )

≤ τµ sup
k∈K

[F ]Cµ(Qτ ).

Also we find from (5.77) that

(5.80)
∥∥∥Āαβ

ij

∥∥∥
L∞(Qτ )

≤ c
∥∥∥Aαβ

ij

∥∥∥
L∞(Qτ )

and
∥∥F̄∥∥

L∞(Qτ )
≤ c∥F∥L∞(Qτ ).

Let v be the weak solution of

(5.81)

{
Dα

[
Āαβ

ij Dβv
j
]

= DαF̄
i
α in Qτ ,

v = u on ∂Qτ .

We test (5.74) and (5.81) by ui − vi (i = 1, . . . , N) to find that

−
∫
Qτ

〈
Āαβ

ij

[
Dβu

j −Dβv
j
]
, Dαu

i −Dαv
i
〉
dx

= −
∫
Qτ

〈[
Āαβ

ij −Aαβ
ij

]
Dβu

j , Dαu
i −Dαv

i
〉
+
〈
F i
α − F̄ i

α, Dαu
i −Dαv

i
〉
dx.

So by using Young’s inequality, we obtain from (5.78) and (5.79) that

(5.82) −
∫
Qτ

|Du−Dv|2 dx ≤ c
( τ
R

)2µ [
κ−
∫
Qτ

|Du|2 dx+R2µ sup
k∈K

[F ]2Cµ(Qk
τ )

]
.
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To use Lemma 5.8, we set V : Qτ → RNn as V =
(
V 1, . . . , V N

)T
, where

(5.83) V i =

 ∑
1≤α≤n

πα

 ∑
1≤j≤N

∑
1≤β≤n

Āαβ
ij Dβv

i

− F̄ i
α

 , Dx′vi + π′D1v
i


for any 1 ≤ i ≤ N . By the triangle inequality, (5.78), (5.79) and (5.82), we
compare U in (5.75) and V in (5.83) as follows:

−
∫
Qτ

|U − V |2dx

≤ c−
∫
Qτ

∣∣∣[Aαβ
ij − Āαβ

ij

]
Dβu

j
∣∣∣2 dx

+ c−
∫
Qτ

∣∣∣(Āαβ
ij

[
Dβu

j −Dβv
j
]
−
[
F i
1 − F̄ i

1

]
, Dx′ui −Dx′vi

)∣∣∣2 dx
≤ c

[
−
∫
Qτ

|Du−Dv|2 + κτ2µ|Du|2 dx
]

≤ c
( τ
R

)2µ [
κ−
∫
Qτ

|Du|2 dx+R2µ sup
k∈K

[F ]2Cµ(Qk
τ )

]
.

So it follows from Lemma 4.1 that

−
∫
Qτ

|U−V |2 dx ≤ c
( τ
R

)2µ(
κ−
∫
Qτ

|U |2 dx+κ∥F∥2L∞(Qτ )
+R2µ sup

k∈K
[F ]2Cµ(Qk

τ )

)
.

Since Āαβ
ij (1 ≤ α, β ≤ n, 1 ≤ i, j ≤ N, k ∈ K) are piecewise constant

coefficients and κ
(
r
R

)2µ ≤ ε, we have from Lemma 5.8 that

−
∫
Qρ

∣∣V − (V )Qρ

∣∣2 dx ≤ c
(ρ
τ

)
−
∫
Qτ

|V − (V )Qτ
|2 dx

+ c
( τ
R

)2µ(τ
ρ

)n(
κ−
∫
Qτ

|V |2 dx+ κ∥F∥2L∞(Qτ )

)
.

By combining the above two estimates, we have from Lemma 4.1 that

−
∫
Qρ

∣∣U − (U)Qρ

∣∣2 dx
≤ c

(ρ
τ

)
−
∫
Qτ

|U − (U)Qτ
|2 dx

+ c
( τ
R

)2µ(τ
ρ

)n(
κ−
∫
Qτ

|U |2 dx+ κ∥F∥2L∞(Qτ )
+R2µ sup

k∈K
[F ]2Cµ(Qk

τ )

)
.

Since 0 < ρ ≤ τ ≤ r was arbitrary chosen, the lemma follows. □

By repeating the proof of Lemma 5.3, we obtain the following lemma.
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Lemma 5.10. For the small universal constant ε ∈ (0, 1] chosen in Lemma

5.6, if κ
(
r
R

)2µ ≤ ε, then for U : Qr → RNn defined as U =
(
U1, . . . , UN

)T
and

(5.84) U i =

 ∑
1≤α≤n

πα

 ∑
1≤j≤N

∑
1≤β≤n

Aαβ
ij Dβu

j

− F i
α

 , Dx′ui + π′D1u
i

,
where 1 ≤ i ≤ N , we have that

−
∫
Qρ

|U |2 dx ≤ c

(
−
∫
Qr

|U |2 dx+ ∥F∥2L∞(Qr)
+R2µ sup

k∈K
[F ]2Cµ(Qk

r )

)
for any 0 < ρ < r.

Proof. The proof is the same to that of Lemma 5.3. Instead of (5.27) and W ,
use (5.76) and U , respectively. □

We extend the technical result [9, Lemma 3.4] to the following lemma.

Lemma 5.11. Let ϕ(t) be a nonnegative function on [0, R]. Suppose

ϕ(ρ) ≤ A
(ρ
τ

)α
ϕ(τ) +Bτβ

(
τ

ρ

)n

holds for any 0 < ρ ≤ τ ≤ r with A,B, α, β, n nonnegative constants and
β < α. Then for any γ ∈ [β, α), there exists a positive constant c depending on
n,A, α, β, γ such that

ϕ(ρ) ≤ c
[(ρ
τ

)γ
ϕ(τ) +Bρβ

]
for all 0 < ρ ≤ τ ≤ r.

Proof. Since γ ∈ [β, α), choose δ = δ(A,α, γ) ∈ (0, 1) so that 2Aδα ≤ δγ . Fix
0 < ρ ≤ δτ ≤ δr. Otherwise the lemma holds from that δτ ≤ ρ ≤ τ and that
δ = δ(A,α, γ) ∈ (0, 1). Let τi = δiτ . Then

ϕ(τi+1) ≤
δγ

2
· ϕ(τi) +Bδ−nτβi

for any i = 0, 1, . . .. Since δ ∈ (0, 1) and γ ∈ [β, α), we find that

ϕ(τi+1) ≤
(
δγ

2

)i+1

ϕ(τ) +Bδ−n

[
τβ0

(
δγ

2

)i

+ τβ1

(
δγ

2

)i−1

+ · · ·+ τβi

]

≤
(
δγ

2

)i+1

ϕ(τ) +Bδ−n

[
τβ0

(
δβ

2

)i

+ τβ1

(
δβ

2

)i−1

+ · · ·+ τβi

]
.

Since τβ0 δ
βi = τβ1 δ

β(i−1) = · · · = τβi , we obtain that

ϕ(τi+1) ≤
(
δγ

2

)i+1

ϕ(τ) + 2Bδ−nτβi
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for any i = 0, 1, . . .. Choose i ∈ {0, 1, 2, . . .} satisfying that τi+2 ≤ ρ ≤ τi+1.
Then

ϕ(ρ) ≤ A

(
τi+1

ρ

)n

ϕ(τi+1) +Bδ−nτβi+1

≤ Aδ−n

(
δγ

2

)i

ϕ(τ) + (2A+ 1)Bδ−2nτβi

≤ Aδ−n−γ
(ρ
τ

)γ
ϕ(τ) + (2A+ 1)Bδ−2nτβi ,

and the lemma follows from that τβi ≤ δ−2βτβi+2 ≤ δ−2βρβ . □

Lemma 5.12. For the small universal constant ε ∈ (0, 1] chosen in Lemma

5.6, if κ
(
r
R

)2µ ≤ ε, then for U : Qr → RNn defined as U =
(
U1, . . . , UN

)T
and

U i =

 ∑
1≤α≤n

πα

 ∑
1≤j≤N

∑
1≤β≤n

Aαβ
ij Dβu

j

− F i
α

 , Dx′ui + π′D1u
i

 ,

where 1 ≤ i ≤ N , we have that

1

ρ2µ
−
∫
Qρ

∣∣U − (U)Qρ

∣∣2 dx
≤ c

r2µ
−
∫
Qr

|U − (U)Qr |
2
dx

+
c

R2µ

(
κ−
∫
Qr

|U |2 dx+ κ∥F∥2L∞(Qr)
+R2µ sup

k∈K
[F ]2Cµ(Qk

τ )

)
for any 0 < ρ ≤ r.

Proof. In view of Lemma 5.10, we have that

(5.85) −
∫
Qτ

|U |2 dx ≤
(
−
∫
Qr

|U |2 dx+ ∥F∥2L∞(Qr)
+R2µ sup

k∈K
[F ]2Cµ(Qk

r )

)
for any 0 < τ ≤ r. In view of Lemma 5.9, we have that

−
∫
Qρ

∣∣U − (U)Qρ

∣∣2 dx
≤ c

(ρ
τ

)
−
∫
Qτ

|U − (U)Qτ
|2 dx

+ c
( τ
R

)2µ(τ
ρ

)n(
κ−
∫
Qτ

|U |2 dx+ κ∥F∥2L∞(Qτ )
+R2µ sup

k∈K
[F ]2Cγ(Qk

τ )

)
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for any 0 < ρ ≤ τ ≤ r. So it follows from (5.85) that

−
∫
Qρ

∣∣U − (U)Qρ

∣∣2 dx
≤ c

(ρ
τ

)
−
∫
Qτ

|U − (U)Qτ
|2 dx

+ c
( τ
R

)2µ(τ
ρ

)n(
κ−
∫
Qr

|U |2 dx+ κ∥F∥2L∞(Qr)
+R2µ sup

k∈K
[F ]2Cγ(Qk

r )

)
for any 0 < ρ ≤ τ ≤ r. So by taking α = 1, γ = β = 2µ ∈ (0, 1) in Lemma
5.11,

−
∫
Qρ

∣∣U − (U)Qρ

∣∣2 dx
≤ c

(ρ
τ

)2µ
−
∫
Qτ

|U − (U)Qτ
|2 dx

+ c
( ρ
R

)2µ(
κ−
∫
Qr

|U |2 dx+ κ∥F∥2L∞(Qr)
+R2µ sup

k∈K
[F ]2Cγ(Qk

r )

)
for any 0 < ρ ≤ r. So the lemma follows. □

6. Proof of the main theorem

With the assumption in the main theorems, the estimate has scaling in-
variance. By taking r = 2R, ρ = R, c1 = supk∈K+

[Dx′φk]Cγ(Q′
3R) and

c2 = supk∈K+
∥φk∥L∞(Q′

3R) ≤ 4R + 2nR supk∈K+
∥Dx′φk∥L∞(Q′

3R) in Lemma

2.1, we use the condition (1.9) to find that

|Dx′φl(x
′)−Dx′φk(x

′)|

≤ 6

[
Rγ sup

k∈K+

[Dx′φk]Cγ(Q′
3R) + 1 + n sup

k∈K+

∥Dx′φk∥L∞(Q′
3R)

] 1
γ+1 [

φl(x
′)− φk(x

′)

R

] γ
γ+1

for any x′ ∈ Q′
2R and k, l ∈ K+. Since µ = γ

2(γ+1) , we have that

[Dx′φk]C2µ(Q′
3R) = sup

x′,y′∈Q′
3R

|Dx′φk(x
′)−Dx′φk(y

′)|
|x′ − y′|

γ
γ+1

≤ (3nR)
γ2

γ+1 sup
x′,y′∈Q′

3R

|Dx′φk(x
′)−Dx′φk(y

′)|
|x′ − y′|γ

= (3nR)
γ2

γ+1 [Dx′φk]Cγ(Q′
3R).

So for the following universal constant

(6.1) κ = 18n

(
1 +Rγ sup

k∈K+

[Dx′φk]Cγ(Q′
3R) + sup

k∈K+

∥Dx′φk∥L∞(Q′
3R)

)
,
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one can show that

(6.2)

|Dx′φl(x
′)−Dx′φk(x

′)|

≤ κ

(
φl(x

′)− φk(x
′)

R

)2µ

(x′ ∈ Q2r, k, l ∈ K+) ,

and

(6.3) |Dx′φk(x
′)−Dx′φk(y

′)| ≤ κ

(
|x′ − y′|

R

)2µ

(x′, y′ ∈ Q′
2r, k ∈ K+) .

To prove the Hölder continuity of U in Theorem 1.7, we use the following
Campanato type embedding.

Proposition 6.1. Suppose that h ∈ L2(Q2R(z)) satisfies∫
QR(y)

|h− (h)Qr(y)|
2 dx ≤M2rn+2γ (y ∈ QR(z), r ∈ (0, R])

for some γ ∈ (0, 1). Then

[h]Cγ(QR(z)) ≤ cM.

Proof of Theorem 1.7. Let u be a weak solution of

Dα

[
Aαβ

ij Dβu
j
]
= DαF

i
α in Qr(z).

We first prove (1.11). By comparing (6.2) and (6.3) with (5.71) and (5.72)
respectively, we apply Lemma 5.10 and Lemma 5.12 respect to the point z ∈ QR

instead of the origin to find that for a sufficiently small universal constant

ε ∈ (0, 1], if κ
(
r
R

)2µ ≤ ε, then

(6.4)

1

ρ2µ
−
∫
Qρ(z)

∣∣U − (U)Qρ(z)

∣∣2 dx
≤ c

r2µ
−
∫
Qr(z)

∣∣U − (U)Qr(z)

∣∣2 dx
+

c

R2µ

(
κ−
∫
Qr(z)

|U |2 dx+ κ∥F∥2L∞(Qr(z))
+R2µ sup

k∈K
[F ]2Cµ(Qk

r (z))

)
,

and

(6.5)

−
∫
Qρ(z)

|U |2 dx

≤ c

[
−
∫
Qr(z)

|U |2 dx+ ∥F∥2L∞(Qr(z))
+R2µ sup

k∈K
[F ]2Cµ(Qk

r (z))

]

for any z ∈ QR and 0 < ρ ≤ r. For the simplicity, set ε̄ =
(
κ−1ε

) 1
2µ which is a

universal constant.
If ε̄R < ρ ≤ R, then we have that ε̄R < ρ ≤ r ≤ R. So (1.10) and (1.11)

holds when ε̄R < ρ ≤ R. So suppose that ρ ≤ ε̄R.
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If 0 < ρ ≤ r ≤ ε̄R, then (1.10) and (1.11) hold from (6.4) and (6.5). So
assume that 0 < ρ ≤ ε̄R ≤ r ≤ R. Then by (6.4) and (6.5),

1

ρ2µ
−
∫
Qρ(z)

∣∣U − (U)Qρ(z)

∣∣2 dx
≤ c

R2µ
−
∫
Qε̄R(z)

∣∣U − (U)Qε̄R(z)

∣∣2 dx
+

c

R2µ

(
κ−
∫
Qε̄R(z)

|U |2 dx+ κ∥F∥2L∞(Qε̄R(z)) +R2µ sup
k∈K

[F ]2Cµ(Qk
ε̄R(z))

)
,

and

−
∫
Qρ(z)

|U |2 dx

≤ c

(
−
∫
Qε̄R(z)

|U |2 dx+ ∥F∥2L∞(Qε̄R(z)) +R2µ sup
k∈K

[F ]2Cµ(Qk
ε̄R(z))

)
.

So from that κ and ε̄ is universal, (1.10) and (1.11) hold when 0 < ρ ≤ ε̄R ≤
r ≤ R. □

Proof of Corollary 1.8. Let u be a weak solution of

Dα

[
Aαβ

ij Dβu
j
]
= DαF

i
α in Q2R.

Since z ∈ QR and 0 < ρ ≤ r ≤ R in (1.10) and (1.11) were arbitrary, by
Proposition 6.1,

(6.6) [U ]2Cµ(QR) ≤
c

R2µ

(
−
∫
Q2R

|U |2 dx+ ∥F∥2L∞(Q2R) +R2µ sup
k∈K

[F ]2Cµ(Qk
2R)

)
,

and

(6.7) ∥U∥2L∞(QR) ≤ c

(
−
∫
Q2R

|U |2 dx+ ∥F∥2L∞(Q2R) +R2µ sup
k∈K

[F ]2Cµ(Qk
2R)

)
.

By taking ζ = Du, from Lemma 4.1 and Lemma 4.2, we have that

(6.8) |Du(x)| ≤ c
[
|U(x)|+ |F (x)|

]
for any x ∈ QR and

(6.9)

|Du(x)−Du(y)|

≤ c
[
|U(y)− U(x)|+ |F (y)− F (x)|

]
+ c
[
|U(x)|+ |F (x)|

] [
|π(x)− π(y)|+ |π(x)− π(y)|2

]
+ c
[
|U(x)|+ |F (x)|

] ∑
1≤i,j≤N

∑
1≤α,β≤n

∣∣∣Aαβ
ij (y)−Aαβ

ij (x)
∣∣∣
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for any x, y ∈ Ql
R and l ∈ K. We have from Lemma 2.4 that π ∈ Cµ(Q2R)

with the estimate that

(6.10) [π′]Cµ(Q2R) ≤ cR−µ.

Also we have that

(6.11) Rµ
[
Aαβ

ij

]
Cµ(Ql

2R)
≤ c (1 ≤ α, β ≤ n, 1 ≤ i, j ≤ N)

for any l ∈ K. With (6.10) and (6.11), we find from (6.9) that

|Du(x)−Du(y)| ≤ c

[
|x− y|µ

(
[U ]Cµ(QR) + [F ]Cµ(QR)

)
+

(
|x− y|
R

)µ (
∥U∥L∞(QR) + ∥F∥L∞(Q2R)

)]
for any x, y ∈ Ql

R and l ∈ K. So with (6.8), we find from (6.6) and (6.7) that

∥Du∥2L∞(QR) ≤ c

(
−
∫
Q2R

|U |2 dx+ ∥F∥2L∞(Q2R) +R2µ sup
k∈K

[F ]2Cµ(Qk
2R)

)
and

[Du]2
Cµ(Ql

R)
≤ c

R2µ

(
−
∫
Q2R

|U |2 dx+ ∥F∥2L∞(Q2R) +R2µ sup
k∈K

[F ]2Cµ(Qk
2R)

)
for any l ∈ K. Since |U | ≤ c

(
|Du|+ |F |

)
in Q2R, Corollary 1.8 holds. □
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