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GRADIENT TYPE ESTIMATES FOR LINEAR ELLIPTIC
SYSTEMS FROM COMPOSITE MATERIALS

YoucHAN KiMm AND PILSOO SHIN

ABSTRACT. In this paper, we consider linear elliptic systems from com-
posite materials where the coefficients depend on the shape and might
have the discontinuity between the subregions. We derive a function
which is related to the gradient of the weak solutions and which is not
only locally piecewise Holder continuous but locally Holder continuous.
The gradient of the weak solutions can be estimated by this derived func-
tion and we also prove the local piecewise gradient Holder continuity
which was obtained by the previous results.

1. Introductions

In this paper, we study linear elliptic systems from composite materials.
First, we describe our model problem in this paper. For composite materials,
the physical characteristics of the medium are divided into a finite number
of components or subregions. So let & C R™ (n > 2) be a bounded domain
and Qp,...,Q; C Q be the mutually disjoint subregions (of Q) with Qg :=
O\ (Q1U---UQ,). Here, the subregions g, 4, ..., {; represent each component
of a composite material 2. Since the physical characteristics are regular in each
component 2, ..., 2, we consider the following linear elliptic systems.

For C17-domains €, ...,Q; and €, let u € W2 (Q, RN) be a weak solution
of

(1.1) Ba {A%ﬁ(x)aguj} =9, F in Q
forl1<a,8<mnand 1<ij <N, where

(12) AP <A (2)€ig) and AT (2)] <A (z€Q, £eR™Y)

for some positive constants A and A. Because the physical characteristics are

regular in each subregion €, ..., C 2, we assume that A?jﬁ, Fi e C*(Q)

(k € {O,...,l}) forany 1 < o, <nand 1l <14, j < N. We remark that only
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the interior estimates will be obtained in this paper, and one may not impose
any regularity condition on the boundary data.

The regularity theory related to composite materials is motivated by the
numerical observation [2] that the gradient bound |Du| is independent of the
distance between the subdomains for certain homogeneous isotropic linear sys-
tems of elasticity. Bonnetier and Vogelius [3] considered a geometric structure
of two touching disk inside a disk to obtain a gradient boundedness of the weak
solution. Then Li and Vogelius [20] obtained the global Lipschitz regularity and
global piecewise gradient Holder continuity for linear elliptic equations in gen-
eral geometry, say mutually disjoint subdomains 1, ..., §2; inside the domain
Q. Later, Li and Nirenberg [19] extended [20] by obtaining the local Lipschitz
regularity and the local piecewise gradient Holder continuity for linear ellip-
tic systems. Here, “gradient piecewise Holder continuous” means that Du is
Hélder continuous in each €y for any k € {0,...,{} and “local gradient piece-
wise Holder continuous” means that Du is Holder continuous in each €3 N €
for any k € {0,...,1} and ' CC Q.

In [19, 20], they obtained the piecewise gradient Holder continuity in the
point-wise sense by using the Schauder type approach. In this paper, we find
a suitable function related to the gradient of the weak solution which is not
only locally piecewise Holder continuous but locally Holder continuous (see
Theorem 1.7). Then by using that the coefficients are Holder continuous in each
component, one can also show that the gradient of the weak solution is piecewise
Holder continuous which was already obtained in [19,20] (see Corollary 1.8).
The purpose for obtaining such a result is to derive a gradient type estimate
which can be used for an open problem suggested by Li and Nirenberg in [19]
which is related to the piecewise Holder continuity of higher order derivatives for
weak solutions to elliptic equations from composite materials. We will obtain
the desired gradient Holder type estimate by using the excess functional, say
JCQT ) | g — (g)Q,,,(Z)| dz, which appears in Campanato type embeddings.

We introduce the notations in this paper. Let y = (y',9’) € R™ be a typical
point, and r > 0 be a size.

(1) Q.(y) = {x’ = (22,...,2") € R" 1 i maxaoci<, |20 — yi| < 7“} is the
open cube in R"~! with center ' and size r. Also we denote Q. =
QL(0).

(2) Qr(y) = {z € R" : maxi<i<y 2" —y'| <r} = (y' —r,y' +7) x QL(y)
is the open cube in R™ with center y and size r. Also we denote
Qr = Qr(o)'

(3) For a function g(x) in R™,

1
@Uﬁammuﬂémwm,

where U is an open subset in R™ and |U] is the n-dimensional Lebesgue
measure of U.
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A typical composite material Q C R™ (n > 2) composed of C17-boundaries
can be described as follows. Let €y C Q be a connected component in )
and Qs,...,Q; C Q be the components surrounded by ;. Without loss of
generality, we may assume that ; U---U€Q; and Qo U --- U §); are open. Let
Do, ..., D, C Q be the disjoint open connected components of Qs U - U €.
Then for the open set D1 = Q1 U- - U, we have that Q1 = D1\ (D2U---UD,,).
If Dy, Dy, ..., D,, are C1"7-domains, then we may say that the component (or
the subregion) Q; is composed of C'7-boundaries. For this geometry, one can
prove that for a sufficiently small scale, there exists a coordinate system such
that the boundary of the subregions becomes a graph, see for instance [17]. For
the composite geometry related to C''*Y-domains, we also refer to [19,20].

With the description in the previous paragraph, we may assume that the
cube @,(z) can be divided into the components (of the composite material) or
the subregions by using C'7-graph functions {¢y, : k € K, }. Here, K, will be
used to denote the index set of graph functions. The subregions in @, (z) will
be denoted as QF(z) with a index set K. We remark that for the index of the
components K = {k_,k_ +1,...,ky}, there is an one more element {k; + 1}
in the index set of the graph functions K, = K U{ky + 1}. We also remark
that there can be only one element in K = {k_,k_ +1,...,k;+}. In Definition
1.1, Upex Uy, denotes disjoint union meaning that Upcx Uy, is the union of the
sets {Uy : k € K} and that {Uy : k € K} are mutually disjoint.

Definition 1.1. We say that (Q,(z), {yr : k € K;}) is a composite cube if the
graph functions ¢, € C17 (QL(2")) (k € K4) with K = {k_,k_ +1,...,k;}
and Ky = K U{ky + 1} satisfy that
(Pk(xl) < SDkJrl(ml) (l‘ € Q;'(Z% ke K)7
and
— k
QT(Z) - kgKQr(z)’
where Q(y) := {(2',2") € Qr(y) : pr(2') < ' < prpa(a’)} (k € K).

For the composite cube inside the cube, we use the following natural defini-
tion.

Definition 1.2. For the composite cube (Q,(2), {¢k : k € K1}), we denote
Qu(y) = {(=". ") € Qp(y) : pr() <&’ < (@)} (k€ K)
for any Q,(y) C @r(2).

Remark 1.3. If (Qr(2),{pr : k € K;}) is a composite cube, then for any Q,(y)
C Qr(2), (Qp(y), {wr : k € K1}) is also a composite cube. Moreover, we have
that infg (. <pk7| > r and infg (.1 cpk++1| >rfor K ={k_,k_+1,..., kg,
ky +1}.

To state our main theorem, we define a vector-valued function 7 : @,.(2) —
R™ ! which is naturally induced from our geometry.
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Definition 1.4. For the composite cube (Q,(2),{¢r : k € K}), define Ty, :
Q-(z) = [0,1] (k € K) as

Lo el
(1.3) Tp(x,2") = @) — on (@) Q;(z) (keK).

Then ‘the derivative of the naturally induced flow’ 7 : @,(z) — R"™ is defined
as

(1.4) 7= (-1,7")=(=1,7m2,...,m),

where

(15) () = Dars1(a’) - Tio(x) + Daspr(x') - [1 = Tio(x)] in Qr(2)
for any k € K and a € {2,...,n}.

Remark 1.5. At a boundary point of subregions, say = = (¢r(z'),2') € Q,(2)
(k € K), we have that 7/ (z) = Dy pg(x’). Moreover, from the point (g (z'), ")
to the point (pg41(x’),a’), the value of ' changes linearly from D, g (z’) to
D, ror11(2’). So the derivative of the naturally induced flow remains the same
for any subset Q,(y) C Qr(2).

Remark 1.6. In Definition 1.4, the reason for using the phrase ‘the derivative
of the naturally induced flow’ is that for the flow ¢ : Q,_.(2) x (—¢,€) = R"
defined as

(') = [prr1 (' +1') = prpa ()] - Ti(x) + [ (@' +1) — @r ()] - [1 = Ti(2)],

we have that 7'(x) = 8tw(x,t’)|t:0. In [16], the concept of the (time) deriva-
tives of the flow will be used to solve the open problem suggested by Li, Niren-
berg and Vogelius in [19,20]. But there are some technical difficulties related
to the discontinuities and we need some additional argument for proving the
piecewise smoothness for piecewise smooth coefficients, see the introduction of

[16].
We assume that A%ﬁ :R? — RV xRN™ (1 <4,7 < N, 1< a,3 < n)satisfy
that

16) AP > > AY(a)¢ih (weR™, (eRNM)
1<4,j<N 1<a,<n
and

aBf n .o
(1.7) \Aij(x)\SA (zeR", 1<i,j<N,1<q,f<n).

We now state the main results. In Theorem 1.7, we focus on the cube Q3p
and assume that the minimum of the absolute value of the graph functions are
smaller than 4R. If the minimum of the absolute value of the graph functions
such as ¢p_ and ¢, 11 is greater than 4R, then one can choose new graph
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functions ¢5,_ and g, 1 in the way that the regions of the composite cube
remain the same. For the simplicity of the notation, we set

0 1
1.8 =——"€e(0,-].
i o= s e (0]
We also explain the constant p = ﬁ in the condition A%’B, Fi e Cr(Q5R).

The main tool for handling the composite domain or the composite cube is
the estimate on the non-crossing boundaries of the regions or the non-crossing
graph functions, (see for instance [20, Section 5] or [19, Section 4]) which comes
from that the boundary of the components in the composite materials does not
cross each other. In the estimate, we lose some regularity (see Lemma 2.1) and
the main equation behaves like elliptic equations with C*-Hdélder continuous
coeflicients.

Theorem 1.7. For the composite cube (Qsr,{¢k : k € K1}), assume that

(1.9) inf |pg] <4R (ke Ky).
' €QLR

Also for p in (1.8), assume (1.6), (1.7) and that
AP FL € O (Qbg)
foranyl<a,8<n,1<4j< N andk € K. Let u be a weak solution of
D, {AfjﬁDﬁuj} = DoF' in Q.(2),

and define U : Qg — RY" as U = (U17-~7UN)T and

U= > m >y AP Dgul | — Fl| |, Dy + 7' Dyu!

1<a<n 1<j<N 1<B8<n

for any 1 <1 < N, where m: Qag — R" is defined in Definition 1.4. Then we
have that

1 ][ 2
- U— (U)o, | da
p2p Qp(z)‘ Qp( )‘
c 2
(1.10) = 73u U= (U)q,»] dz
Qr(z)
C
+ Ren ]é o UP? da + ”FH%OO(QT(Z)) + R EEE[F%;L(Q';(Z))] )

and

(1.11>][ IU?M@(][ U dz + | FIIF o (@u) + 7 sUD [F10 012
0,05 0.00) (Q2r) Suplon @k
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for any z € Qr and 0 < p < r < R. Here, the constant ¢ depends on
the terms n, N, A\, A, suppeg, 1D @kllL=(qy,): B SWPkek, [Darerlcr (@, )
RFsuppe g [A?jﬁ]c (@t and the number of elements in the set K.

"(Q%R)

We will later prove that ' € C?*(Qag). We will compare Du and U later
in Lemma 4.1 and Lemma 4.2. So by using Theorem 1.7, one can obtain the
Lipschitz regularity and piecewise gradient Holder estimates which were already
obtained in [19,20].

Corollary 1.8. For the composite cube (Qsr,{pr : k € K+}), assume that

inf |ok| <4R (ke Ky).
' €Qhp

Also for u in (1.8), assume (1.6), (1.7) and that
foranyl<a,8<n,1<4j< N andk € K. Let u be a weak solution of
D, {A?jﬁDBuj} = DoFl in Qon.

Then we have that Du € L>*(Qgr) and Du € C* (QY%) for any | € K with the
estimates

2 2 2 2u 2
DU~ qny < e (£, 1D do b 1P g+ B suplFlE g,

and

2 c 2 2 2 2
[Pulenar) < Fon (]{m |Dul”dz + |Fllz0 (@ur) + B “SEE[F]CN@’;R))

foranyl € K. Here, the constant ¢ depends onn, N, A\, A, supyc i, [|Dor @l L= (qy,)»
RY suppee, [Darrlcn(qyy)s BY Subrex [A%ﬁ] and the number of elements in the

set K.

o (@br)

We refer to Calderén-Zygmund type estimate for linear equations [10-12,21]
and p-Laplace type equations [13,22]. Also there is another direction about the
elliptic equation from composite materials which is the blow up phenomenon
such as two almost touching fibres having the extreme (0 or oo) conductivities,
see [1,14].

For the sake of the convenience, unless specified, we employ the letter
¢ > 1 throughout this paper to denote any constants that can be explicitly
computed in terms of the constants n, N, A, A, supyeg, [|Dar@rllLe= (@)
R supge e, [Daorle(@y )y BY subpek {A?jﬁ} o1 (@) tsafsmtds
1,7 < n) and |K| the number of elements in the set K. Thus the exact value
denoted by ¢ may change from line to line in a given computation.
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2. Estimates on the derivative of the naturally induced flow

In this section we will prove that the derivative of the naturally induced flow
7 in (1.4) is locally Holder continuous in the cube.

2.1. Decay estimate for the graph functions

To handle two non-crossing graph functions in {py : k € K.}, we use follow-
ing result, which naturally holds from our geometric settings (also see [20, Sec-
tion 5] or [19, Section 4]).

Lemma 2.1. Suppose that @y, ¢ : CH7( v+p) — R satisfy that
[Derpklcv @y, ) [P ellevar,,) < o,

leellz=@;, ): lletll=(qr,,) < c2
and
ok <1 oin Q.
Then we have that

e B

_1
(2.1) [Depi(a’) = Darpr(a”)| < 3p~" (p"7er + 2¢2) 77 [pu(a”) — i ()] 7+
for any =’ € Q..

Proof. Fix 2’ € Q;.. Choose y' € Q. , with

_1
Dypi(a') — Doripr(’) ([@z (2') — <Pk($')]> o,
|Dorpi(2') — Dyrpr ()| plHer + 2¢o '
Then by the Taylor expansion of ; — ¢ with respect to 2/,

[ou(@”) = (') = [pu(y") — x(y)]

> [Dorpr(a’) — Darpr(a)] - (2" — o)

— ([Da:’ﬁpl]C”f(Q;,ﬂ)) + [DI’SDk]C”f(Q;,ﬂ))) |$

Since i (y') > ¢r(y'), we find from (2.2) that
ei(@’) — pr(a’)

(2.2) y =12 —

/_y/|1+'y.

lpu(a’) — pr(a’)] ) G

> Dw/ I_le !
> iDuri(e!) - Dargnla)| (EAE 20

pr ([Dx'@l]cv(c);+p) + [Dx/%]cv(cg;+p)> [pi(2") — pr(a")]

prtle; + 2¢y

So with that [le(pk]cry(Q;‘_H)), [Dm'%ﬁl]cv(Q;+p) < ¢1, we absorb the last term
on the right-hand side to the left-hand side to find that

Sloie’) = ou()] 2 Drnle’) = Dora(a)] (=28 0) ™

and so the lemma holds. O
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Remark 2.2. With the assumption in the main theorems, the estimate (2.1) in
Lemma 2.1 has scaling invariance. By taking » = 2R and p = R, we use the
condition (1.9) to find that

Ccy = su ooy <4R + 2nR sup ||D, (O Y-
2 keng%HL (Q4r) keIgH v Prl| Lo (@)

Thus with ¢ = supgeg, [Dx“Pk]CW(QgR),
[Daripi(a) — Darp(a')|

]*{ww—wwq*

S 6 R’Y sup [D$/(pk]C“r(QéR) + 1 +nkS€l;£)+ HDE/SOICHLOQ(QéR) R

KER
for any 2’ € Q4 and k,l € K.

In the main theorem, we obtain the estimate with respect to the cube Q3p.
But for proving the main theorem, we localize the problem and derive the
estimates with respect to the cube Q,(z) C Q2r. So from now on, we will
assume that

| Daripi(2') = Dorpi(a’)] < KR | () — (@) (2" € Q1(2), Lk € Ky)

for some constant k£ > 0, where this constant will be chosen as

k= 18n <1 + RY sup [Da;'@k]cv(QgR) + sup ||D_»L-/(pkLoo(QéR)>
kEK, keK .,

2
+ R?" sup [ 9?}
ker L7 lon(Qhy)’

in the proof of the main theorem. Here, we also remark that

R* [Dyr]canqy,y < (3nR) [Dugrlcr(@y <k (k€ Ky,

2.2. Estimate on (mwa,...,7,)

With Lemma 2.1, we obtain Holder estimates related to m; in Lemma 2.4.
The results in this section are obtained with respect to the origin, but the origin
can be changed to an arbitrary point in R™ by using translation.

For the composite cube (Qar, {pr : k € K4 }), let m be the derivative of the
naturally induced flow 7 : @3, — R"™ in Definition 1.4. Then

(2.3) 7= (-1,7)=(-1,79,...,7n),

where

(24)  7a(2) = Dari1(2’) - Tu(x) + Dagr(a) - [L = Ti(z)]  in Q3
for any k € K and o € {2,...,n}. In view of Lemma 2.1, we assume that

n o ’ 24
25) 1Dile) - Durta)] < w (P22 T 07 e o mre i)
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and

/ / lz" — /| 2 ro /
(26)  [Darpr(e’) = Do) <k —5— | (0,4 € Q@ k€ Ky)
for some constants £ > 0 and R > 0. Also recall from (1.8) that 2u = 1=

y+1°
For this subsection, we employ the letter ¢ > 1 to denote any constants that

can be explicitly computed in terms such as n, £, supycg, Do @il Lo (qy,)
and the number of elements in the set K.
We first handle the case when the two points belong to the same region.

Lemma 2.3. Under the assumptions (2.5) and (2.6), we have that

ly — 2\ * =
R - <o (BT (e Thnen)
for any k € K.
Proof. Let y = (y',y') € @ﬁ Q2 and z = (21,7) € @ﬂ Q2. Then

(2.7) er(y) <y < era(y) and @i (2) < 21 <o (?).
To prove the lemma, we take
1 /
vy —r(y) ’ ’ /
2.8 w = Yr+1(2") — pr(2")] + pr(2') € R.
( ) @k—i—l(y/) — @k(y/)[ +1( ) ( )} ( )

Then we claim that
(2.9)  w € [pr(2'), prt1(2)] and |(w,2") =yl +[(w,2") = 2| < cly — 2[7.
By a direct calculation using (2.8), we have from (2.7) that

NP et 24 €0
w = er(2) or+1(y) — ey

3 [ppr1(2") — r(2)] > 0

and ) )
SDk+1(Z/) —w= Sﬁk+1(y ) -y

= pen() — ) P ) e 20

which implies that
(2.10) w € [pr(2), rr1(2')]-
To prove the second inequality of (2.9), recall from (2.8) and (2.7) that

W — yl — @k(y/) ([
ort1(y’) — or(y')

eri1(2) = err1(¥)] = [or(2) — x(y)])

and .
y' —or(y)

<1
ert1(y') — on(y')

So we obtain that

(211) |w—2" < Jors1(2) = @rar (1) |+ 2l0n(2) = (W) |+ |y = 21| < cly—2],
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and

(212)  Jw =y < lprs1(2) = @rar ()] + 2l (2) — @r(y)| < cly — 2|
So the claim (2.9) holds from (2.10), (2.11) and (2.12).

To estimate 7’/ (y) — 7’(2), with (2.8), we make the following computations
that

Dorori1()[2" = wr(2)]  Dorpr(2)[2 — w4 w — ()]

Pr+1(2") — o(2)) Pr+1(2") — o(2')
_ D1 (2)[2" — ] n Dypri1(2)y' = or(¥))]
ry1(2') — or(2') r+1(y) — or(y')
and
Dorpi(2)lpr+1(2') — 2'] _ Darpr(2)lr41(2) —w+w — 2]
er+1(2) — pi(2') er+1(2) — pr(2')
_ Doer(d)leen1(y) —y ]+ Dyrpp(2)[w — 2']
err1(y) — er(y') ert1(2) —pr(2')

By the definition of 7/(y) and #’(2) in (1.5),
7T/(Z) _ 7_‘_/(y) _ |:Dx’§0k+1(z/)[zl - @k(zl)] n DI"Pk(Z/)[SOk-q-l(Z/() _) Zl]:|

er41(2") — pr(2') ry1(2') — (2
B |:Dz’§0k+1(y/)[yl —¢ry)] | Doon(y)ler1(y) — yl}]
er+1(Y) — k(') er+1(Y) — er(y')

So it follows that
[Darprt1(2) — Darpre(2')] [z — w]
or+1(2) — pr(2')
[Derpi(2') = Darpre (W)l 41 (') — y']
er1(y') — er(y’)
[Darpr+1(2") — Do (0)Ily" — or(y')]
er1(y) — er(y') '
It only remains to estimate the right-hand side of the above equality. By (2.5),

w(z) () =

+

+

N / 24
(213) ‘Dw’¢k+1(2/) _ Dw’@k('z,” <k ("pk)-ﬁ-l(z)}% Sok(z )|) )
From (2.7) and (2.9), we have that
(2.14) w, 2" € [pr(2"), prr1(2)] and y' € [0 (), ors1(y)].

So by (2.6), (2.13) and (2.14), we obtain that

|ﬂ@—ﬂwwsM[C*RM)%+(wR y L

and the lemma follows from (2.11). O

With Lemma 2.3, we now obtain the Holder continuity of 7’ in Qo
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Lemma 2.4. Under the assumptions (2.5) and (2.6), we have that

) <er (L) wseau)

Proof. If y,z € Q% (k € K), then the lemma holds from Lemma 2.3. So
suppose that y € Q5. and 2z € @b, with k <1 (k,l € K). Let a: [0,1] = Qa,
be a line connecting y and z. Then on the line «, one can choose the points

W1 = (Spk+1(w;q+1)aw;q+l) € QIQCT N §j17

(2.15) Wr+2 = (@k+2(w;c+2)vw;c+2) € ng_l N ng-z’

w = (u(w)),w)) € Q4 NQL,.

Let y = wy and z = wy41. Since y € Q5. and z € Qb,., we find from (2.15) and
Lemma 2.3 that

7 () — 7 (1) < e ('w’”;’m”) (m=k,....D).

Since the points y = wg, Wk41, Wkt1,...,w; and w41 = 2z are placed on the
line connecting y and z, we get that

ly —2[\*
7 (1) — 7' (o 1)] < e (R) (m=k,...I).
So the lemma follows by the triangle inequality. (I

3. Gradient estimates for reference equations

In this section, we obtain gradient estimates for when the coefficients are
measurable in one variable. The results in this section are based on [6] and
[7, Lemma 3.5], but we write this section for the convenience of the readers.
For the extension to nonlinear problems, see [4]. For this section, we employ
the letter ¢ > 1 to denote any constants that can be explicitly computed in
terms such as n, N, X\ and A.

Assume that

(31) A < A% (M)eed and ‘Af‘jﬁ(xl)‘ <A (z€Qy £€RY)

for some positive constants A and A. Let h € W12 (Qg, RN) be a weak solution
of

(3.2) Da [A;*ﬁ(xl)pﬁhf} =0 in Q.

We first have the following energy estimate in the following lemma.



646 Y. KIM AND P. SHIN
Lemma 3.1. Under the assumption (3.1), let h be a weak solution of (3.2).
Then
/ \Dh|? dz < %/ h— (h)q,,|” dz
Qs P~ JQs,

for any p € (0,1].
Proof. Fix p € (0,1]. In view of (3.2),

(3.3) D, [A;;ﬂ (@) Dy (b — (hJ)sz)] =0 in Q.
Choose a cut-off function ¢ € C2°(Q2,) with
(3.4) 0<¢p<1, |[Dg|<cp' and ¢=1 in Q,.

We test (3.3) by [h! — (h')qg,,] ¢ to find that

/Q <A%B(x1)D5 [hj - (hj)Qm?} s Da [hi - (hi)sz] > ¢2 dx

2p
= —/Q <A%ﬁ(x1)Dﬁ [h] _ (hj)sz] , [hz _ (hi)sz] 2¢Da¢> de.
2p
Then by (3.1) and Young’s inequality, we have
/ | Dh|" 6% da < / [h— (1), || Do da,
Q2p Q2p

and the lemma follows from (3.4). O

We have the following higher order estimate in the following lemma.

Lemma 3.2. Under the assumption (3.1), let h be a weak solution of (3.2).
Then for any integer p > 0, we have that

/ |D§,Dh|2dx§c(p)/ |h— (h)q,|” da.
1 Q2

Proof. If p = 0, then the lemma holds from Lemma 3.1. So we assume that
p=>1
Let ¢ € {0,...,p} and p, = 1+ —L=. Fix (0,¢') € N with |(0,¢)| = ¢.

q+1
Then we have that
(3.5) Do (457 (@)D [Der (W = ()qs,)] ) = 0in Qs
Choose a cut-off function ¢ € C°(Q,,) with
(3.6) 0<¢p<1, |Dp|<c(q) and ¢=1inQ, ;.

We test (3.5) by Der (b — (h%)q,) #* to find that

/Q (A3l (") Dg [Der (W — (W)q, )] Do [Der (' = (h)q,)] )¢° da

Pq

= = [ (a0 [De (07 = ()] [De (4 = 0¥)a.)] 2000} .

Pq
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Then by (3.2) and Young’s inequality,

2 2
[ 10De = ) Potan < | De (= )au) Do
whence we have from (3.6) that
2 _ 2
/Q IDDe (h — (W)y) |* dz < ()8 2/@ Der (h — (W)oa) | da.
Pg+1 Pq

Since ¢ € N"~! was arbitrarily chosen, we find that

[ D= o) Pde <o) [ [P (0 () [ o
Q

Pg+1 Pq
Also since ¢ € {0,...,p} was arbitrarily chosen, if we apply induction, we get
that
/ D _/ ]DDg,h|2dm§c(p)/ |h = (o, | de
Q1 Ppi1 Q2
and this complete the proof. O

Lemma 3.3. Under the assumption (3.1), let h be a weak solution of (3.2).
Then

Ih(z) — h@)? < el — 4] /Q = (h)q,|* da

for any x,y € Q.

Proof. By using an approximation argument, we may assume that h € C(Q2).
To use the Sobolev type embedding, we take an integer p > 3.

Let (x!,2'), (y',9') € Q1. We use the Sobolev embedding theorem in x'-
variable to find

|h( z') — h(y', ") ‘ <c|x —y‘/ |Dih(2t, )| d2t.

Also for any fixed 2! € (—1,1), applying the Sobolev embedding theorem in
7’'-variable, we have

|Dih(2, 2) < Z / |DZ,D z’)|2dz'.
0<q<p
So it follows that
(3.7) |z 2") — h(y' x)‘ < clr -y Z / | D%, D1h(", z)| dztdz'.
0<q¢<p

On the other hand, by applying the Sobolev embedding theorem first in
2’-variable and then in x'-variable, we obtain that

n(at, o) = hat )| < cla’ —y'| Y D9, h(z", )| d,

1<q<p Q1
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and
‘Dg,h(xl,z')‘2 < c/ ’Dg,h(zl,z’)‘z + ’Dg,Dlh(zl,z’)|2 dz! (0<q<p)
(=1,1)
for any fixed 2! € (—1,1). So we have that
(38) |h(z"2") = h(z',y )| < clz —y Z / |DI,Dh(z", z )‘ dz'dz.
0<q¢<p
By combining (3.7) and (3.8), we discover that
o) ho ) <ol —ol 3 [ 18D
0<q<p

Now using Lemma 3.2, we finish the proof of the lemma. O

Next, we handle the inhomogeneous case. Under the assumptions (3.1), let
w e Wh? (QQ,RN) be a weak solution of

(3.9) Da [A%B(xl)Dﬂwj} = DiFi(z!) in Q..

Set W : Qo — RN where W = (W1,...,W¥)" and

(3.10) wi=|1- > > Af@"YDsw' | + Fi(z'), Dyw’
1<j<N 1<B<n

for any 1 < i < N. Then Agjﬁ(zl)Dgwj — Fi(x') is weakly differentiable for
any i € {1,..., N} as in the following lemma.
Lemma 3.4. With (3.1), let w be a weak solution of (3.9). Then

|[DW1| < c¢|DDyw(z)]  (a.e. x € Q).

Proof. Since F} is a function of z'-variable, Dgw’ are weakly differentiable
in Qo for the a’-variables. So by the definition of weak solution and (3.9),
Alljﬁ (x1)Dpw’ — Fi(z') are weakly differentiable in the z!-variable. Thus

DuW{ = Dy [A @)D (2) = File)] == 30 Da [AF ) Dsud (0
2<a<n

== > AP )DaDsw (x)

2<a<n
for a.e. z € Q2 and 1 <i < N. So we find that

}D1Wf| = ‘D [A;f(xl)DBwj(m)—Ff(:vl)”
< |1 [Al @) Do (2)— Fi(ah)|[+| Dar [AY (@) Dg? (@) - Fi(a1)]|
<c|DDyw(x)|

forae.ze€@oand 1 <i<N. O
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With Lemma 3.4, we obtain the following excess decay estimate.

Lemma 3.5. Under the assumption (3.1), let w be a weak solution of (3.9).
Then for W in (3.10), we have that

][ |W—(W)Qp\2dx§cp][ W — (W)a,|*dz (p€(0,2)).

P 2

Proof. By differentiating (3.9) with respect to z™-variable (m € {2,...,n}),
(3.11) Da {Afﬁ(xl)pﬁ (mej)} =0 in Q.

So by applying Lemma 3.3 to (3.11) and D,,w instead of (3.2) and h respec-
tively,

(3.12) ][ | Dinw — (me)Qp|2 dz < cp/ | Dimw — (Dimw) g, |2 dx
Q2

P

for any p € (0,1]. Also by applying Lemma 3.1 to (3.11) and D,,w instead of
(3.2) and h respectively,

(3.13) / |DD,w|? dz < p%/ | Dpw — (me)sz’2dx
2

P Q2p
for any p € (0,1]. Since m € {2,...,n} was arbitrarily chosen, we find from
(3.12) and (3.13) that

(3.14) ][ |Dyrw — (Dprw)g, |” d < cp/

| Dyrw — (Dprw) g, |2 dz,
P Q2

and
c 2
(3.15) / \DD$,w|2 dx < ﬁ/ ‘lew— (Dw/w)sz‘ dx
P QZP

for any p € (0,1].
With (3.10), by Poincaré’s inequality and Lemma 3.4,

2
][ ‘(Wl) - (Wi)g ’ dzx < sz][ |DW1|? da < cp2][ |DDz/w‘2d:E
0 Qp Q

P P

for any p € (0,1/2]. By (3.14) and (3.15),

p2][ ]DDw/w|2dw < ][ ‘Dw’w - (Dw’w)sz‘gdm
Qp 2

P

< cp/ | Do — (Dyrw) g, ‘2 dx
Q2
for any p € (0,1/2]. Thus

2 2
Iy AT
Q, Q2
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for any p € (0,1/2]. So with (3.14), we find from (3.10) and Holder’s inequality
that

(3.16) ][ |W7(W)Qp‘2dx§cp][ (W — (W)q,|” do

P 2

for any p € (0,1/2]. If p € (1/2,2], then one can check that

][ W — (W)g,|” dz < 2]{2 W — (W), |” +|(W)g, — (W)g,|” de

P

< c][ |W — (W)Q2|2dm,
2
which implies that

2 2
(3.17) ][ W — (W), |* de < cp]{2 W — (W), |*de
P 2

for any p € (1/2,2]. So we discover from (3.16) and (3.17) that the lemma
holds. O

4. Comparison of Holder norm

In Section 3, we derived the excess decay estimate with respect to the func-
tional W not the gradient of the weak solution Dw. With this estimate, we
will obtain the excess decay estimate with respect to the functional U in (4.3)
(which corresponds to W) not Du. So to obtain the piecewise Holder continu-
ity of Du, we compare the Hblder norm of U and the Holder norm of Du in
this section.

In the later sections we will consider composite cubes. So unlike W in (3.10),
U in (4.3) depends on 7’ in (1.4) which was naturally induced by our geometry.
In fact, we will use Lemma 5.9 in the later paper [16]. So to minimize the
condition of the results, we consider only one point for Lemma 4.1 and two
points for Lemma 4.2.

- We compare U with Du and F' in the following lemma. Later, we will take
Cé = Dguj.
Lemma 4.1. Let 7 = (—1,m3,...,m,) € R® and my = —1. For the constants
(4.1) AP,

satisfying (1.6) and (1.7), we define U € RN™ as

Fi ¢l (1<i,j<N,1<a,pB<n),

(4.2) U= : o
uy oo uXN
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where

43)  Ul= ) ma Yoo > AP | -FLl (i=1,...

1<a<n 1<j<N 1<B8<n
and
(4.4) Up=Ch+mp¢ (i=1,...,N, B=2,...,n).
Then we have that
(4.5) ¢ < c[[U]+ 17,

where ¢ is a constant only depending on n, N, X\ and A.

Proof. Since m; = —1, it follows from (4.3) and (4.4) that

U= > ma >y APUL | - FL

1<a<n 1<j<SN 2<B<n
} : E : } : af J
— To Aij 7T/3<1
1<a<n 1<j<N 1<B<n

for any ¢ = 1,..., N, which implies that

D D Agmamad

1<j<N 1<a,B<n

= Z T Z Z AaBU] —F| —U}

1<a<n 1<j<N 2<p8<n
for any ¢ =1,...,N. Thus

Z Yo AT (rai) (mad])

1<4,J<N 1<a,B<n

(4.6)

2G| X ome| X X ATV - R -0

1<i<N 1<a<n 1<j<N 2<B<n

So from (1.6), (1.7) and that m = —1, we obtain that

MPlaP <ol | | =X Jaus|) +1F

1<a<n | \1<j<N 2<B<n
whence
(4.7) Gl < Imllcil < e[ U]+ 7]
Moreover, from (4.4) and (4.7), we discover that
1Gal < U]+ [lIGal < e[lU]+ |FI]

+ |U1]
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for any 8 =2,...,n. This and (4.7) complete the proof. |

To obtain the Holder semi-norm Du with the Holder semi-norms U and F,
we consider the two points set as a domain in the following lemma.

Lemma 4.2. For fivzed z,y € R™ (x £ y), let 1 = (=1, ma,...,m) : {z,y} —
R™ and m, = —1. For the functions

A%ﬁ:{x,y}%RN”XRN", F(i:{x,y}%RN" and (é:{z,y}%RN",

satisfying (1.6) and (1.7) (1 < a,8<n, 1<4,j < N), we define U : {z,y} —
RN™ gs

Ul Un
Uy Uy
where
49) U= Y ma Yooy Ay | -F (i=1,...,N)
1<a<n 1<j<N 1<B<n
and
(4.10) Uy=Ch+m¢s (i=1,...,N, 3=2,...,n).

Then we have that
<) = )| < e[lU(y) - Ul)| +|F(y) - F@)l]
+e[[U@) + 1F@)] [Im(@) = 7@)] + Im(@) - 7(y)P]
+eflv@i+IF@] Y Y Al w) - @),

1<i,j<N 1<a,8<n

where the constant ¢ only depends on n, N, X\ and A.

Proof. In this proof, ¢ denotes a constant only depending on n, N, A and A.
Since m; = —1, it follows from (4.3) and (4.4) that

Ui= D me|| Do > ATUG) -

1<a<n 1<j<N2<p<n

=D ma| 2 D ATmd

1<a<n 1<GSN 1<B<n
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for any ¢ = 1,..., N, which implies that

Z Z A 7ra7T5C1

1<j<N 1<a,B<n

(4.11) v [( s 5 AaﬁUﬂ) .

1<a<n 1<j<N 2<8<n

_ Uli

for any ¢ =1,..., N. One can directly check that

ol DY AP Wmay)msy) [Cf(y)—Cf(x)}
1<GEN [1<apsn

= Y | Y AP@m)ms)| dw)

(4.12) 1<G<N [1<a,8<n

+ Y Y A @ma@)ms@) - AP W) w)ma)| @)

1<j<N 1<a,f<n

> [ > A?}ﬁ(iv)ﬂa(ff)m(fﬂ)] ¢(x)
1SN [1<a,5<n

for any ¢ = 1,..., N. With (1.6), we use the left-hand side of (4.12) as follows:
M (@) = Q)P (y)?

>, liw [ >, A7 )@(y>] dw) - d @)

IN

1<i,j<N 1<a,B<N

A

< |G(z wl >

1<i<N

> [ > A;;-%m(y)m(y)] [dw) - dw]|.

1<GSN | 1<a,8<n

which implies that

NG (@) = G)lim )l
< > 1Y { > Af}ﬁ(y)m(y)m(y)} [Cf(y)*d(fc)}-

1<i<N |1<G<N | 1<a,8<n

(4.13)

We next estimate the right-hand side of (4.12). With (4.11), one can prove
that

> Y AP me @) @) - AT @)me @) () ()]

1<j<N 1<a,B<n

< elm(y)|[|U W) - U(@)| +|F(y) - F(@)
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+e[[U@)] +F@)|] Ir(@) - ()
+eflu@)+IF@IIw Y Y | - A @)

1<4,j<N 1<a,f<n

foranyi=1,..., N. Since m; = —1, one can check from (1.7) that

> Y AP @ma@)ms(@) - AT )ma)me)| @)

1<j<N 1<a,f<n

<c Y Y AP@ - AP W) In@) ()]

1<i,j<N 1<a,<n
+elm(@) - 7(y)| [Im(@)] + 17 ()]G (@)
for any ¢ = 1,..., N. In view of Lemma 4.1, we have that
(419 |G@)] < [R@)]IG@)] < o, N ) [[U@)] + [F)]).

By applying the above three estimates and that w(z) = 7(x) — w(y) + 7 (y) to
(4.12), we get that

>

1<GSN 1<, <n

> A3B<y>na<y>7r5<y>] A -d@)]

< clr()| U (y) - U(@)| + |F(y) - F@)]
+e[[U@)]+ 1F@)] [IrW) (@) = 7@)] + (@) - 7@)]

+e|lU@)| +|F ][ DD

1<4,j<N 1<a,B8<n

AP W) - AY (@) \]

for any i =1,...,N. Since 7(y) = (— 1,m2(y),...,mn(y)), we find from (4.13)
that

7)1 (@) = 1)
< c[lUw) ~ U@ +1F ) - Fa)]
(4.15) +e[[U@)+ 1F@)]] [Im(@) = w@)] + In(2) - w(y)ﬂ
+eflu@l+F@l] Y Y Al w) - Ay @)

1<i,j<N 1<a,<n

Moreover, combining (4.10), (4.14) and (4.15), we discover that
€s(y) — Ca(@)] < [U(y) = U@)| + |7 (y) — m(@)[[C(@)] + [7(y)][€1(y) = G ()]
< c||UW) - U@)|+|F(y) - ()]
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e[ [U@)+ 1F@)| [In(@) =7 + lr(z) — =(o)]
telu@l+IP@] > Y AW - 4 @)

1<i,j<N 1<a,B<n
for any 8 =2,...,n. With |7(y)| > 1, this and (4.15) complete the proof. [

5. Excess decay estimates

We obtain the desired excess decay estimates in this section. For the first
subsection, we consider the case when || decays with respect to the size of the
cube and the coefficients are piecewise constant. Then in the next subsection,
we counsider the case when |7/| has no decay assumption and the coefficients
are piecewise constant. For the last subsection, we handle the case when the
coefficients are piecewise Holder continuous with no decay assumption on ||
by using the perturbation argument.

5.1. Piecewise constant coefficients with decay assumption

Choose a size 7 € (0, R]. For a composite cube (Q-,{pr : k€ K;}), let w
be the derivative of the naturally induced flow 7 : Q, — R"™ in Definition 1.4.
Then

™= (_1771—/) = (_1a T2y 77Tn)7
where
7a(@) = Dars1 (2') - Te(@) + Dagr(@’) - [L = Te(@)] i Qb
for any k € K and o € {2,...,n}. For some universal constant v > 1 which
will be determined later, we also assume an decay of «’ that
2p
(5.1) I7(0)) =0 and |7/|<v (%) in Q,
forany 0 < p <.

For this subsection, we employ the letter ¢ > 1 to denote any constants that
can be explicitly computed in terms such as n, N, A\, A, k, R¥supjc, (Do ekl (qr)
and the number of elements in the set K.

We first handle the case when the coefficients are piecewise constants. For
the constants A%’ F& r 1<a,B8<n, 1<4,j <N, ke K) satisfying that

ij,k?
(5.2) NeP < A%, gl and ‘ of (€ e RV,
WedeﬁneAQ‘ﬂ Fi (1<a,B<n, 1<i,j<N)as
(5.3) Aaﬁ Z A” pXqr and Fi(x Z o EXQE -
keEK keK

We remark that Aiaf and F! (1 < a,8 <mn, 1 <i,j<N) are constants in
each Q% (k € K). Then one can check from (5.2) that

(5.4) NP <AL (2)ele, and [AY ()| <A (zeQ., E€RV).
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Let w be a weak solution of
(5.5) Da [A%B (m)pﬁwa} = D Fl in Q..
By using the Gehring-Giaquinta-Modica type inequality, see for instance [5,
Theorem 5.6], one can prove that

P
(5.6) <][ | Dw|*t d:c) <c (]{2 | Dw|? dx + ||FH2LQC(Q6)> (0 €(0,7])

for some small universal constant o € (0,1]. We define W : Q, — RN" as
W = (Wl, cee WN)T, where

(5.7) Wi = - > > AVDgw’ | + Fi|, Dy’

1<GSN 1<B<n
forany 1 <7< N.
Fix 6 € (0, 7]. For each k € K, one can choose z}, € @} so that
(5-8) or(21) < Pt (2g1) (k€ K),
and
(5:9)  (pr(z1),21) € Qo if Qo N{(pr(a'),2') 2" € Q} #0 (k€ Ky).
Set

(5.10) 2, = (pr(21), 21)-
Then by (5.8) and (5.9),
(5.11) z <z (k€ K).

It follows from the definition of 7’ in Definition 1.4, (5.1) and (5.9) that

0\
(512 5 € Qo= Donlep)l = 7 (onleph )l = 7 )l < v ()

Since Dy € C7(Qy) (k € Ky) and 2p = —I= in (1.8), we discover that
R [Dz/gak]cm(%) < cRY [Dzwk]m(Qg) So We ﬁnd from (5.9) and (5.12)
that

2p
(5.13) Qm{(w(w'm’):x'ecz;}ﬂ):Dmm(g) n Q)

for any k € K.

VVedeﬁneA;’;’B,Fz (1§0z,6§n 1<4,5<N) as

AozB Z A” Xzl <at<z, and
(5.14) ke
FZ Z F szk<ac1<z in Q9~

keK
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Then one can check from (5.2) that
(5.15) Me? < AP (ah)giel and AT (2')] <A (2! € (=0,0), £ e RN™).
Also one can check from (5.9) and (5.11) that
(5.16) HFHLOO(Qg) HF”Loo(Qg)’
by using that

Qs =0={(a",2)€Qp: 2, <a' <z} =0
With (5.10) and (5.13), one can compare Aio;-ﬂ and F!(x) with f_lio;-ﬂ and F(z)
respectively:

_ . _ 0\ %"
(5.17) H:z: €Qy: A% + A;‘f}‘ +{reQo: Fi£F} <ew (R> o".
Let h be the weak solution of
(518) Da [A;*f(zl)DBhﬂ} =D Fi(z') i Q)
h =w on 0Qp.

Then set H : Qg — RV™ as H = (Hl,...,HN)T, where

(5.19) H=]|- > > AYDsh | +F|, Dyh'
1<j<N 1<B<n
for any 1 <7 < N.

Lemma 5.1. Suppose (5.1), (5.2) and that Dw € L?>7°(Qq) for some o €
(0,00]. Then for H in (5.19), we have that

][ |W — H|?dx
Qe

< 5 0 % D 2+¢7d H% F 2
< e = Qg| w] i +l HL“’(QQ) .

Proof. We first estimate Dw — Dh. We test (5.5) and (5.18) by w — h in Qg to
find that

]2 (437 [Dgw! — Dah'], Dow' — Doh') da
6

(5.20)

:]{Q ([Asf — 48| Do, D’ ~ D) + (Fi ~ Fi, Daw’ — Dah') d.
6
By Young’s inequality, we obtain from (5.15) that
][ |Dw — Dh|*da
Qo

_ 2
<ec H ’Af“f — AP
Qo

(5.21)

|Dw|2dx+]é \Fi — Fi|? dx] .
0
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By Holder’s inequality, we obtain that

’ A B A B
Q6 ‘ ’(L?;' %
2

) o] 55 2
][ AP — 40P [][ |Dw|2+"dx] |
Qo Qo

So we find from (5.15) and (5.17) that

qop B
fo b

2uo 2
. [0\ THe
< cve () (][ | Dw|*t dx) .
R Qo

In view of (5.17), we obtain that

/ |F;_F;\2dxg/ F—F[* da
Qo {z€Qo:F#£F}

(5.23) <[{wcQo:F £ P} (/Q |F;_Fg;|2+“)”"

2
|Dw|?* dx

<

2
| Dw|? dx

(5.22)

20
o [0\ I
< cwTe (R) o [HFHiw@e) + ”F”2L°°(Qe)} ‘

With (5.16), it follows from (5.21), (5.22) and (5.23) that

][ |Dw — Dh|* dx
Qo

TN oo s )
< cvFe <R) <]l | Dw| da:) F N o | -
6

We obtain from (5.22) that

(5.24)

_ . 12
/Q ‘A}fDBwﬂ —A}fDBwJ‘ dx
6

Taf B
c]ég‘Ag; — A

2uo

2
o [0\ e
Ve () <][ |Dw|2+0dx>
R Qo

forany 1 < g <mand 1 <4,j < N. With (5.7) and (5.19), we have from
(5.24) and (5.25) that

F WP <o (R) [(][ |Dw|2+“dx) +IIFIIiw<Qe>]a
Qo Qe

2
| Dw|? dx

IN

(5.25)

IN



LINEAR ELLIPTIC SYSTEMS FROM COMPOSITE MATERIALS 659
where H : Qg — RY is defined in (5.19). O

Lemma 5.2. Suppose (5.1), (5.2) and that Dw € L*>*°(Qg) for some o €
(0,00]. Let w be the weak solution of (5.5). Then

][ W — (W)g,|” dz

P

<ec (g) ]{29 W — (W)o,|? da

20 2
+cevte | — - Dw|*T° dz + | F||5 oo
(%)) | (£ 10w 11w

forany0<p<O<r.

Proof. Let h be the weak solution of (5.18) and set H as in (5.19). Since F} (z1)
(1 <a<n,1<i<N) are independent of z’-variables, (5.18) yields that

(5.26) Da [A;*f(xl)Dﬁhﬂ'] = D\ Fi(z)) in Q.

Apply Lemma 3.5 to h in (5.26) and H in (5.19) instead of w in (3.9) and W
in (3.10), respectively. Then we have that

F 1= e, e <e(5) . 15~ (a1 da.
Qp QO
It follows from Lemma 5.1 that

][ W~ (W)q,|” do

P

<c (g) ]ée W — (W), |* do

20 2
. O\ zte /9\" PR 9
+ cv e () ( ) <][ |Dw|2+"d3:) + [|F||7
R p 0 L (QG)

O

Lemma 5.3. There exists a constant € € (0,1] such that if v (%)% <e¢, then

fowparse|f wea i,

P QT
for any 0 < p < 7. Here, ¢ € (0,1] depends only on the constants n, N, A, A,
RYsupye e, [Darprlcn(qr) and the number of the elements in the set K.

Proof. The proof is similar to that in the paper [8,15,18], but we give the proof
for the sake of the completeness.
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By applying Lemma 5.2 to (5.5) and applying Lemma 4.1 to Dw and W
instead of ¢ and U with 7 = (—1,0,...,0), we find that

o=, s

P

(5.27) <ec (g) ]29 W — (W)g,|* d

_o 9 % 9 " ][ 2 2 )
+ vt | — — Wl“dx + || F||5
(%) () (Q9| R e+ P By

for any 0 < p < 0 < 7, which implies that

1

(f, 1w-ome,f )

P

P\ 2 :
<a(5) (£ -0l )
. [O\T [0\ ? 3
¥y | — el W12d F| e )
+ v (R) (p) l<][Q9| ‘ 55) +1Fz (Qr)]

For a small constant § € (0,1) chosen to be later, let 7; = §'7. By letting
P = Ti+1 and 0 = Tis

(]{; ‘W - Wa..,

Ti+1

< o6} ( F oo,
Q

T3

po
_n _o _ [T\ 2Fo
+Cl5 2 1 2(2+0) (é) <][

for any i = 0,1,2,.... Choose the universal constant § € (0,1) so that ¢,62 <
1. Since the constant o € (0,1] chosen in (5.6) is universal, select the universal
constant € € (0, 1] so that

o
U
8
\—/
ol

[\v]
IS
8
SN——
ol=

2
|W2d$> + 1 F]l 2@,

T4

20¢, 0 "2
1-— 52(517)
which implies that
no

no 7 _ o
_o [T\ 2¥o _ o 20c1 0w ICED /TN F
5.28 20¢ v 2T (7) 5 n§ rre < /2 T <7)
( ) ' R =0 1— 52(5+0) R




LINEAR ELLIPTIC SYSTEMS FROM COMPOSITE MATERIALS 661

2 2(210)
0015 S 1
1— 52(2+a>

for any j =0,1,2,.... Since

(]{2 |W|2dac>é < <]{2 W - (W,

k3

N
<][ ]W—(W)le dx)
QTi+1
1 2 2
S<][ W (W dx)
2 Q- i

=
Fad=tumtio (37 (an)g,

1
2
2d33> +| (W), |,

we have that

+1Fllz=@.)
from (5.28). By summing up over i =0,1,2,...,7, it follows that
j+1

> (f W=, |

=0

(529) <4 <]£2 W - (W), | dx) ’

70

po

J )
+ 20,67 %y 7T (%) Y [55*63 (|W)q.,.| + IIFIILw(QT))}

=0

for any j =0,1,2,
‘We now claim that

(5.30) ’(W)QT]‘SH)(S_"[(]{Q W ? d:z:) +||F|Lw(Q7>} (j=0,1,2,...).

We prove the claim (5.30) by induction. First, we can easily check that (5.30)
holds when j = 0. Next by an inductive assumption, suppose that (5.30) holds
for 0,1,...,7. From the inequality

Z]é Wa.,

Tit1

Jj+1
<53 <][ W —W)a,.|” dm) :
i=0 \Y@n

dz

WMa.,,, = W),

N
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and (5.29), we see that

(Wa.,,, — W,

<457z <][
Q

g ] ;
+ 2067 ()Y [655 (|, | + 1Pl i)

70

With the inductive assumption (5.30), we have that

J ,

Hoi

E d2teo
i=0

We also note that

(5.31) <]{2 W - (W)a,, | da:) 2 <2 <]{2 W2 d:c> -

Therefore, we have from (5.28) that

1

i 2
(W)q,,| < 10577 <255+0> (]{g W dfﬂ) F1Fllzo @)

=0

’(W)QTj+1 - (W),

<85 % <][ W ? dx) +67" <][
Qrg Q

We now remember that 6 € (0, 1] to get the desired (5.30).
Since 7; = 0’7, we find from (5.28), (5.29), (5.30) and (5.31) that

]é W= (W, i dmgc[]g

7
because ¢ € (0,1) was chosen universal. So by (5.30) and that 7; = §'7 (i =
0,1,...),

J

Since ¢ € (0,1) was a universal constant, we find that

][ W|2dw<c[][ W|2d:c+||F||2Loo(QT)]

P T

2
2
W dw) + 1 Fll o (q,)

70

70

‘W|2 dx+||F||%N(QT)] (j:071323"')a

Tj T

for any 0 < p < 7 and the lemma follows. (|
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5.2. Linear coordinate transformation

To apply Lemma 5.2 and Lemma 5.3 for the general situation, we use a
linear coordinate transformation. To use a coordinate transformation ¥, we
define ‘the derivative of the naturally induced flow respect to ¥’ in Definition
5.4 corresponding to ‘the derivative of the naturally induced flow’ in Definition
1.4.

For this subsection, we employ the letter ¢ > 1 to denote any constants that
can be explicitly computed in terms n, supyer, | Dokl (g1 )» BY subrer, (Dol ey
and the number of the element in the set K.

Definition 5.4. Suppose that (Q,,{pr : k € K1}) is a composite cube. For
any Q,(z) C Q, and ¢’ € R"!, let ¥ : Q,(2) — R" be a linear coordinate
transformation defined as

U(z) = (z' —2' = (a' = 2'),2" = &)
Let y = ¥(z) be the new coordinate system. Then we define the derivative of
the naturally induced flow with respect to ¥ as follows.
Let the new graph {(¢x(v'),y’) : ¥' € Q% } be the transformation of the graph

{(pr(a’),2") 12’ € Q-(2)} under the coordinate transformation W. For any
ke K, set Ty : ¥(Q-(2)) — [0,1] as

1 > !
- vy —oely) b
5.32 Tyt y) = = = in ¥ (Qr(2)).
(552) W)= o) - ) (@)
Then the following vector-valued function 7 : ¥ (Q,(z)) — R"
7= (=1,7) = (1, 72y ..., 7n)

is called the derivative of the naturally induced flow respect to ¥, where 7 =
—1 and

(5:33) Faly)i=Dy i) - Te@)+Dyedr(y)) - [1 = Ta(y)] in W (Q4(2))
for any k € K and « € {2,...,n}.

To apply the coordinate transformation, we prove the following lemma. We
remark that in the following lemma, ¥ only depends on the point z € @, and
is independent of the size 7.

Lemma 5.5. Suppose that (Qr,{¢k : k € K1}) is a composite cube with the
condition that

|D;E Wl(x/) - D:v @k ! |

5.34 g 21
( ) <"<5(|(pr ) (E GQ’/IW kaleKJr)

and

x —
(5.35)  |Dwin(a) - Doy < ( Ry') Wy €O keK,)
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for some constant k > 0. For Q.(z) C Q, and the derivative of the natu-
rally induced flow © : Q. — R™, let ¥ : Q,(z) — R™ be a linear coordinate
transformation defined as

U(z) = (z' = 2" =7'(z) - (2 =), 2" = &),

and 7 : U (Q-(2)) — R™ be the derivative of the naturally induced flow with
respect to W. Then

- - PN
|7(0)|=0 and |7'|<ck (E) in Q,

for any Q, C W(Q-(2)).

Proof. Let the new graph {(¢r(y'),y) : ¥’ € Q.} be the transformation of the
graph {(¢x(z'),2") : ' € Q/.(2)} under the linear coordinate transformation ¥.
Then one can check that

!

(5.36) o) =ery' +2) =zt =7'(2) -y
We claim that
(5.37) Fay) =7a (Y + 2" +7'(2) ¥ + 7)) — 7al2)

for any y € U(Q-(2)) and a € {2,...,n}. Fix y = (y',¢) € ¥ (Q¥(2))
(k € K). In view of (5.36), we obtain that

Dy°¢k(y/) = DI(’@k)(y/ + Z/) - Troc(z) (y/ € Q;—a ke K—i—a o€ {25 .. an}) .
So by (5.32) and (5.33),

Foly) = [Dreprr (v +2) — 7TaN(Z)Hyl — &x(y')]
Pr+1(y') — Gr(Y')
[Duopi(y' +2') — ma(2)][Prr1(y) — y']
Pr+1(y') — Pr(y')
_ Deeonn(y' +2[y" = o1yl | Deeinl(y' +2) [Prn(y) —y
Prr1(y') — @r(y') Prev1(y’) — Gr(y')
— ma(2)
for any oo € {2,...,n}. It follows from (5.36) that

fol) = Dyoori1(y +2) [yt + 28 +7(2) - ¥ — o(y + 2)]
o1y +2) — iy +2)

(5.38) | Deminly’ +2) [or1 (v +2) —yt — 2 —7'(2) - /]

ort1(y +2') —on(y +2)

+

']

— Ta(z)
for any a € {2,...,n}. Since y € ¥ (Q¥(z)), we have that

UHy) = (Y + 2"+ 7 (2) Y+ ) € Q).
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Then from (1.5), we obtain that
To (' + 2 +7(2) Yy +
_ Deappa(y' +2) [yt + 20 +7(2) -y — (Y + 2]
a Prr1(y +2) = or(y +2')
L Daooely + ) [oeny' +2) —y' =2 —7'(z) - y]
ey +2') — ey +2')
for any a € {2,...,n}. So by (5.38),

(539) 77ra(y) = T (yl + Zl + W/(Z) ' y/7 y/ + Z/) - 71—04(2)
for any o € {2,...,n}. Thus
(5.40) To(0)=0 (a¢€{2,...,n}).

Since y = (y',y') € ¥ (Q%(2)) (k: € K) was arbitrarily chosen, the claim (5.37)
holds. By comparing (5.34) and (5.35) with (2.5) and (2.6) respectively, we
apply Lemma 2.4 to m and (5.37). Then we obtain from (5.39) that

W=7 (y' +2' +7'(2) -y +2) —7'(2)]

(5.41) <CK<‘(:U +7T/(Z)~y’7y’)|>2”
R

for any y € U(Q-(z)). From (1.5), we have that
7' (2)] <2 sup || Darprllpoe(qr) < €
keK | §

So by (5.40) and (5.41),

- - A

|7'(0)] =0 and |7'| <ck (§> in @,
for any Q, C ¥(Q-(2)). O
5.3. Piecewise constant coefficients with no decay assumption

For the composite cube (Qr,{¢x : k € K1}), let m be the derivative of the
naturally induced flow 7 : @, — R™. Then

7= (-1,7)=(=1,72,...,70),
where
Ta(r) = Dagryr(z') - Ti(x) + Daspr(a') - [1 = Ti(z)]  in QF
for any k € K and a € {2,...,n}. We also assume that
|Daripr(2") — Do (a'))|

(5.42) <x <W)2# (z' € Q, kyl € K.,
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and

/
(543)  |Daon(a’) — Duon(y')] < 5 (' byl ') @y € Q. ke Ky)

for some constant & > 0.

For this subsection, we employ the letter ¢ > 1 to denote any constants that
can be explicitly computed in terms such as n, N, A, A, supic i, || Dar HLM(Q,T),
RY suppeg, [Dm/gok]m(Q;‘) and the number of elements in the set K.

As in Subsection 5.1, we handle the case when the coeflicients are piecewise
constants. For the constants A% F; r(1<a,<n, 1<4j<N, keK)

ij,k?
satisfying that
(5.44) N2 < ASPelel and ‘A;’fk’ <A (E€RMM),
we define A-O‘»B,Fi (1<a,8<n, 1<i,j<N)as
(5.45) Aaﬁ Z AU kXqr and Fl(x Z F! KXQr N Q.
keK keK

We remark that Afjﬂ and F! (1 <a,B8<mn, 1<i,j< N) are constants in
each Q¥ (k € K). Then one can check from (5.45) that

(5.46) M2 < AP (2)ele) and |AY (@) <A (zeQ, E€RN).
Under the assumption (5.42), (5.44) and (5.45), let v be a weak solution of
(5.47) Da {A%ﬂ(aj)Dév} =D Fl in Q,.

Then we define V: Q, — R¥N" as V = (Vl, cee VN)T, where
(548) Vi=| > 7 S AYDv | - FL|  Dyv' + 7 Do’
1<a<n 1<j<SN 1<B<N

for any 1 < ¢ < N. In this subsection, we obtain the Lipschitz estimate of V'
in Qz and the excess decay estimate of V.

Lemma 5.6. Suppose that Q,(z) C Q.. There exists a small universal con-
stant € € (0,1] such that if k (%)% < e and z is a Lebesgue point of V', then

V(2)]? <c l]é o V|? dz + ||F||%W(Q7(z))] :

Here, € € (0,1] depends only onn, N, A\, A, the number of the element in the
set K, suppeg, ||Da:’80k:||Loo(Q;) and RY supyck, [Dw’ﬂ"k]CW(Q;)-

Proof. Define a linear coordinate transformation ¥ : Q,(z) — R”™ with & =
U1 as

(5.49) U(z)
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Let y = ¥(x) be the new coordinate system. Then for any «, 8 € {2,...,n},

oyt oyt ay* oy~
650 g =h g =l 5 =0 g =0
and
Ox! Ox? ox® oz®
51 = = = = = = = 5.
(5 5 ) ayl ’ 8y5 71'5(2’), 6y1 ) ayﬂ B

From (1.5), we have that |n'(2)| < 2supreg, Do @rllp(q,)- So for a suf-

ficiently small constant § = ¢ (n,supkeKJr ||Dx/<pk||Loo(Q,)) € (0,1], we have
from (5.49) that

(5.52) Qsp CU(Qp(2)) and Qs,(2) C 2(Q)) (P € (077'])-
One can check from (5.47) and (5.52) that

(5.53) Dye [Ag;ﬁ(y)pyﬂw} = DGl in Qsr C U (Qr(2)),
where
(5.54) Dysw = t g;j;'Dfo and

G~ o i

forany 1 <o, <nand 1<4,j<N. In view of (5.45) and (5.46),

- oy~ oy’ ., .
(5.55) Aijﬁ(y) = Z Z 90° Dt A Xw(or)) I W(Q(2)),

keK 1<s,t<n

and
i - .
(5.56) Gy = > HpeLerXw@r) i U(Qr(2)).
keK 1<s<n

Since ¥ is a linear coordinate transformation, % and g—z are constants as in

(5.50) and (5.51). So by (5.55) and (5.56), one can check that fl?jﬁ and F!

(1<a,8<n,1<4,j < N)become constants in each Qs NW¥ (Q%(2)) for any
k € K. Also one can check from (5.44), (5.50), (5.51) and (5.52) that

(5.57) ¢ MEP < AN (y)elel and A ()| <c  (y€Qsr EERNT),

and

(5.58) [l [P 1| .
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Let 7 : ¥ (Q,(2)) — R"~! be the derivative of the naturally induced flow with
respect to U defined in Definition 5.4. In view of Lemma 5.5 and (5.52), we
obtain that

(5.59) #(0) =0 and |7]<ck (%)2” in Q,(C ¥(Q,(2)))

for any 0 < p < &7, which corresponds to the condition (5.1) used for Lemma
5.3.
Set W : ¥(Qr(2)) = RN™ as W = (W1, .. .,WN)T, where

(5.60) Wi=||- > > AFDpsw’'| +Gi Dyw'| (i=1,...,N).
1<j<N 1<B<n

By comparing (5.57) and (5.59) with (5.2) and (5.1) respectively, we apply
Lemma 5.3 to the size " 1p and 7. So there exists a small universal constant
¢ € (0,1] such that if x (%)2” < g, then

(5.61) ][ (W[ de < ¢ l][ W do + | GllE~ (@, (2))
Q(s—lp(z) s

~(2)

for any 0 < p < 627 < 0% Set Vi Q.(2) — R¥ as V = (V1,... . VN)",
where

Vi= Z Ta(z) Z Z A%BDzavj — Fl| Dy’ + 7' (2) Dgiv?

I<asN I<HSN 1<B<n

forany 1 <7 < N.

By comparing (5.42) and (5.43) with (2.5) and (2.6) respectively, we have
from Lemma 2.4 that 7 = (—1,7') € C?**(Q,). So for V in (5.48), we have
from Lemma 4.1 that

[V =] < elr —n()[|Derl +1F]] < ex ()" [VI+IF] i @

So for a sufficiently small universal constant e € (0, 1], if & (%)% < g, then

(5.62) V| +IF| <c|[VI+|F]<c[|V|+|F]] in Q.
Since m; = —1, one can check from (5.50) and (5.51) that

iel- X T g ) ¥

1<j<N 1<s,t<n 1<s<n

. F

ER

and
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for any i =1,...,N and 8 = 2,...,n. So by comparing V with W in (5.60),
we find from (5.54) that

(5.63) W (W) = V(2) (2€Qr(2).
Since det (%) =1, we find from (5.52), (5.58) and (5.63) that

][ m%zacScf |W|2dySc][ W dy,
Qﬂ(z) \II(QP(Z)) Q

5§—1p

and

f.

-

=12
(W2 dy + |Gl 2 @y, (o) < € [][ V| dz + ||F|%oo(QT(Z))]

2(Qsr

=12
<elf, PP a1t )|
l 0-(2) (Q(2))

for any 0 < p < §%7. So by combining (5.61) and the above two estimates,

(5.64) ]lQ

for any 0 < p < 6%7. It follows from (5.62) that

|V|2 de <c [][ |V|2 dz + || F||7 (2
]{Qp(z) Qr(2) e

for any 0 < p < 627. Since 0 < p < 627 was arbitrarily chosen and z is
Lebesgue point of V', the lemma follows. (|

_ — 12
(Z)IVIQdZSC [][ V" do + [P 2 q, )

P T(Z

Lemma 5.7. For the small universal constant € € (0,1] chosen in Lemma 5.6,
if K (%)% <eg, then

oo <.

Proof. For any Lebesgue point z € Qz of V, we have from Lemma 5.6 that

VI2de + ||F|%N<QT)} .

T

V(z)* <c [][ \V[*dx + ||F||2Lw(Qr(z))]
Qz(z) 2

<e ][ V2 da + | Il 0,0 ]
l 0.(2) (Qr(2))

Since the Lebesgue point z € @ of V' was chosen arbitrarily, the lemma
follows. (I
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Lemma 5.8. For the small universal constant e € (0,1] chosen in Lemma 5.6,
if Qr(2) C Qr and K (%)QM <e¢, then

]{20(2)

<c(?) ]27(2) V= a.c

20 T\
+ex (%) <) ]Z VI dz + | FII2 q.
I , o) Q- (2))

forany 0 < p <T.

2

dzx

V=g,

2
dx

Proof. Assume that 0 < 2p < 627, otherwise the lemma can be easily proved
by that 627 < 2p < 27.
By Lemma 5.7, if (%)2“ < g, then
VIeL>(Qs)-

r
2

Set W : U(Q,(2)) — RN™ as in (5.60), where W = (W',...,W")" and

(5.65) Wi=| |- > > AYDpw'| +Gi.Dyw'| (i=1,...,N).
1<j<N 1<B<n

With (5.48), we obtain from (5.54) and Lemma 4.1 that

(W(y)| < cl|[Dw(y)] +[G(y)]]
< c[[Dv (@) +[F (@)l < c[[V ()] + [F (2(y))]]

for any y € ¥ (Q,). So by Lemma 5.7 and (5.52),
(5.66) W e L <QL) :
So by comparing (5.57) and (5.59) with (5.2) and (5.1) respectively, we apply

Lemma 5.2 with (5.66) (take o = 0o in Lemma 5.2) to the size 6~'p and &
instead of p and 6. Then

2
Foow-ne, | a
Q(g—lp
(5.67) sc(f)][ W — (W), [* dy
T Qsr

2o 7\ 2 2
sow (L) (p) <]£2 Wi dy+G||Lw(QsT>)
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for any 0 < p < 5277 < ‘si—r. By repeating the proTof of (5.63) in Lemma 5.6, for
V:Q-(2) = RV™ defined as V = (V!,...,VY)" and

Vi= Z Ta(2) Z Z AQ’BD wsv? | = FL| | Dy’ 4+ 7'(2) Dyiv® |,
1<a<N 1<j<N 1<p<n

where 1 < ¢ < N, we have that

(5.68) W (¥(x))=V(z) (r€Q.(2)).

Also by repeating the proof of (5.58) and (5.62) in Lemma 5.6, we obtain that

(5.69) 1G]] 2 sy < NF N 2 29
and
(5.70) VI+IFI <c[VI+|F<c[|V]+IF]] in Q.

Since det (a—y) =1 and § € (0,1] is universal, one can check from (5.68) that

]Z;p(z)

2
dy

_ 2
V—(V)Qp(z>‘ dwﬁc]é@ z))‘W Ww(@,

2
< c][ ]W ~(W)q, | dy
Q{;flp ?

and

W - (W)QJT

]{257

2 2
dygc][ W= (W)yq |y
W(Q- (2)) (Q-(2))
<e ]l V= (V)
0.(2) Q+(2)
So it follows from (5.67), (5.69) and (5.70) that
V- (V) z
]ép(z) Qp(2)

oy
<cl=—
() o
T 21 T " 2 2
+ ¢k (E) (p) (J{?T(Z)|V| dx+||F||L°°(QT(Z))>

for any 0 < p < 5277 < 5%. One can easily extend this estimate to the case
when § <7 <. O

2
dz.

2
dx

2
dx

V=WV,
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5.4. Piecewise Holder continuous coefficients with no decay assump-
tions

In this subsection, we obtain the corresponding result to Lemma 5.8 for
general piecewise Holder continuous coefficients.

For the composite cube (Q,,{¢x : k € K}), let ™ be the derivative of the
naturally induced flow 7 : @, — R". Then

7= (-1,7)=(=1,72,...,7),
where
Ta(@) = Do (@) - Tu(w) + Dapi () - [ = Ty()]  in QF
for any k € K and o € {2,...,n}. Assume (1.6), (1.7) and that AZB,FZ
CH (Qf) for any k € K. Also we further assume that
|Darp1(2") — Darpi(z'))|
(5.71) (M (') —

<k

2/
) (' € Q,, k,le Ky),

o
(5.72) | Darpr(a’) — Durpr(y)] < ,@('x Ry|> @y €qQ., ke K,),
and
(5.73) RH [Afﬂc (Qk)gn% (1<a,8<n, 1<i,j<N, keK)

for some constant x > 0.

For this subsection, we employ the letter ¢ > 1 to denote any constants that
can be explicitly computed in terms such as n, N, A, A, sup,c i, || Dar i HLW(Q’,F)7
RYsupyere, [Daror]cn (g, and the number of the element in the set K.

Let u be a weak solution of

(5.74) Da [A;"fpﬁui} = D.Fi i Q.
Then we obtain the following lemma.

Lemma 5.9. For the small universal constant € € (0,1] chosen in Lemma 5.6,
if K (%)2# <, then for U : Q, — RN defined as U = (Ul, ceey UN)T and

(5.75) U' = ( > 7

1<a<n

(Z ZA Dguj)(i

1<j<N 1<B<n

,Dyut + 7' Dlui) ,
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where 1 < i < N, we have that

]l U~ (U)g,|” d=

P

516 <c(2) f W-Wal i

TN\2m T\
—|—c<—) <> (H][ UlPdz + &||F||? + sup[F12. )
R P 0. U] 1717 (@) kelg[ Jon Q%)

foranyO<p<71<r.

Proof. Fix 0 < p <7 < 7. For any k € K with Q¥ # (), we choose the points
zr € QF. On the other-hand, for any k € K with Q¥ = (), let 2, = 0 for the
simplicity of notation. We remark that we will focus on the set @, and we
don’t need to consider the set Q* when Qf_ = (. Set

(5.77) AO‘B Z A (21)Xxqr and Fi( Z F (zr)x@r In Q.
keK keK

Since A’ Fi € C* (QF) for any k € K, we find from (5.73) and (5.77) that

’Lj’

af _ gop 1T\
(5:78) HA"J' A ‘L”(Q ) = (R)
and
(5.79) |F=Fll g, <™ EEE[F]CM(Q,).

Also we find from (5.77) that

(5.80) HA‘W

y and

af
<l

HFHLOO(Q,) < c|[Fllz=(q.)

‘Lw(@» ’Lw(@»

Let v be the weak solution of
(5.81) Do [ Dp?] = DuFy in Qo
v =u on 0Q;.

We test (5.74) and (5.81) by u’ —v® (i =1,..., N) to find that

][ </_1%ﬂ [D/guj — Dﬂvj} ,Dou’ — Davi> dx

_ ]2 ([A57 - A5] Dsud, Do’ — Do) + (Fi = Fi, D' = Do’ d.
So by using Young’s inequality, we obtain from (5.78) and (5.79) that

2p
(5.82) ][ |Du — Dv|*dx < c (%) {n][ |Dul? dz + R*" sup [F]QCM(Q;C)
Q- keK T

.
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To use Lemma 5.8, we set V : Q, — RVN" as V = (Vl, ceey VN)T, where

(5.83) Vi= ( > Ta [( >y A;ﬁDﬁvi) —Fé] ,Dm/vi+7r’D1vi)

1<a<n 1<G<N 1<B<n

for any 1 < ¢ < N. By the triangle inequality, (5.78), (5.79) and (5.82), we
compare U in (5.75) and V in (5.83) as follows:

][ U — V|2dx

-

c][ (457~ &3] Do

.

_ . ) _ o - 12
+C]{2 ’(AIO;'B [D[}U] — DB’UJ] _ I:Fib _ Fib] ,DI/’LLZ o Dxlva)’ da

2
‘dm

IN

IN

c {][ |Du — Dv|? 4 w7%*|Dul? dx]

T\ Z 2 2 2 }
cl—= K Dul*dx + R*" sup[F N
<R) [ 0. | Dul ke}g[ ]C’M(Q’;)

So it follows from Lemma 4.1 that

T\ 2K
U-V|P?de<c(—= (Ii][ U2 de+k||F||? w0 y+R** sup [F]2 )
v <e(R)" (s f W0F detnlFlieg )+ R sup Pty

Since fl?jﬁ 1 <aopf<n 1<i,j <N, k€ K) are piecewise constant
coefficients and & (%)2“

LW fase(f) f w-wi e

T

T\ ()" 2 2

By combining the above two estimates, we have from Lemma 4.1 that

£ 1v-@,f as

P

<c(2) ]{? U~ (U)q, [ do

720 7\
+cl|—= — K U dz + k|| F||? « + R*" sup[F? >
B (5) (of, 10E e blPe ) + B suplle

Since 0 < p < 7 < r was arbitrary chosen, the lemma follows. (I

IN

< e, we have from Lemma 5.8 that

By repeating the proof of Lemma 5.3, we obtain the following lemma.
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Lemma 5.10. For the small universal constant € € (0,1] chosen in Lemma
5.6, ifﬁ(%)zu < e, then for U : Q, — RN" defined as U = (Ul,...,UN)T
and

(5.84) U' = Z Ta Z Z A%ﬂDguj — F! |, Dy’ + 7' Dyt |,
1<a<n 1<j<N 1<B8<n
where 1 < i < N, we have that

fowtasse(f 07 dot 11 + R suplFEugy )

P r

foranyO<p<r.

Proof. The proof is the same to that of Lemma 5.3. Instead of (5.27) and W,
use (5.76) and U, respectively. O

We extend the technical result [9, Lemma 3.4] to the following lemma.

Lemma 5.11. Let ¢(t) be a nonnegative function on [0, R]. Suppose
A% (T "
< £ z
o(p) < A(2) o(r)+ B (p)

holds for any 0 < p < 7 < r with A, B,«, 3,n nonnegative constants and

B < a. Then for any v € [8, @), there exists a positive constant ¢ depending on
n, A, a, 8,7 such that

o) < c[(2) o(r) + B
forallO<p<7<r.

Proof. Since vy € [, a), choose § = §(A, a,7y) € (0,1) so that 245> < §7. Fix
0 < p <61 < dr. Otherwise the lemma holds from that 7 < p < 7 and that
§=08(A,a,v) € (0,1). Let 7; = 6'7. Then

¢(Ti+1) S % . ¢(Ti) + Bé_nTZ-B

for any ¢ =0,1,.... Since 6 € (0,1) and v € [8, a), we find that

57\ 5\ 57\ i1
d(Tit1) < <2> o(t)+ B " ng <2> + 7'15 (2) N Tiﬁ
sY\ it 58\ NG
< <> o(r)+ Bs™ |7 <> + 77 () +ot 7l
2 2 2
Since 7'055/% =7P§f) = .. = Tf, we obtain that

oY

i1
A(Tir1) < (2) B(7) + 2357”7?
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for any ¢ = 0,1,.... Choose i € {0,1,2,...} satisfying that 7412 < p < 7541
Then

o) < A (;) o(rin) + BS 72

5

2
< Ag (3)7 &(7) + (24 + 1)B6 2170

T

<Ai" ( > o(1) + (2A +1)Bs~ "7/

and the lemma follows from that ’Tiﬁ < 5*257'&_2 < §*2ﬂp3. O

Lemma 5.12. For the small universal constant € € (0,1] chosen in Lemma
5.0, if&(%)w < e, then for U : Q. — RN" defined as U = (Ul,...,UN)T

and
Ul = Z e Z Z A%BDguj — F'| ,Dyu’ + 7' Dy |,
1<a<n 1<j<N1<p<n
where 1 < i < N, we have that

1

2
pZM ’U - (U)Qp| dx
C 2
S T2M ‘U - (U)Qr| dx

c 2 2 2u 2
+ g (v L WRde PV + R s FlE g )
forany0<p<r.

Proof. In view of Lemma 5.10, we have that

(5.85) f uf? dxs(][ P dx+||F||im<Qr)+R2ﬂ;u]g[F]a(Q¢))
S

T r

for any 0 < 7 < r. In view of Lemma 5.9, we have that

fv-@e,

P

< C(g) ]27 U - (U)g,|” da

N2 [T n
—|—c<—) <) (/4:][ Ul dz + k|| F|? « + R* sup[F?, >
2 () (of wrde Pl + B suplFE oy
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for any 0 < p < 7 < r. So it follows from (5.85) that

][ U= (U)g,| dx

P

< C(i) ]éTIU—(U)QJ2 d

T\21 [T "
+c<—) <> (n]l Ul dx + k|| F||? ~ + R** sup[FZ,, )
2 (E) (of, WP et wI I o)+ B suplFIE g

for any 0 < p < 7 < r. So by taking « =1, v = f = 2u € (0,1) in Lemma
5.11,

F 0= o, i

P

<ec (8)2“ ]{;)T U — (U)o, dx

T

P2 2 2 2 2
—|—c(—> (/{ U|* dx + &||F||% o + R“* sup[F )
7)) (5 f WP e P, + B2 suplFlE o

for any 0 < p < r. So the lemma follows. O

6. Proof of the main theorem

With the assumption in the main theorems, the estimate has scaling in-
variance. By taking r = 2R, p = R, ¢; = supkeKJDz/gok]m(QgR) and
ca = supper, @rllre(q,,) < 4R+ 2nRsupyer, [|D@rllL=(q,,) in Lemma
2.1, we use the condition (1.9) to find that

|Dz’90l(37/) - Dm"Pk(x/”

} {901(1") - wkw)] w

< 6| R sup [Dogrlovqy,) +1+7n sup [[Darprl Loy, 7

keK kEK

for any 2’ € Q4 and k,l € K. Since p = %, we have that

Dypi(2') — Dorgr(y')]
[Da:’@k]cz)u(QgR) = sup | = , ) , i (
el |-y
2 ! / - ’ /
< (3’)7/R)# sup |D:c @k(xl) ?m ka(y )|
o'y €Qhp |z’ =y

i
= (3nR)>¥ [Dar @rlc(qy -

So for the following universal constant

(6.1) k= 18n (1 + R sup [Dx"Pk]C“/(QgR) + sup ||Dm/<pk||Loo(QéR)> ,
keK kEK
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one can show that
IDw"Pl(x/) - Dw’@k(aj/)l

62 AN ! 2;1
( ) <,{(W) (wleer, k,l€K+),
and
IR
(63) |D$'§0k($/) - Dl’@k(y/” S K (w) (Jj/,yl S QIQT, ke K+) .

To prove the Holder continuity of U in Theorem 1.7, we use the following
Campanato type embedding.

Proposition 6.1. Suppose that h € L?(Q2r(2)) satisfies
[ i el de < M (g€ Qu(a), € 0.R)
Qr(Y)

for some v € (0,1). Then
[hlem(@ney) < M.
Proof of Theorem 1.7. Let u be a weak solution of
Da [A;;BDW} = DoFl i Q.(2).

We first prove (1.11). By comparing (6.2) and (6.3) with (5.71) and (5.72)
respectively, we apply Lemma 5.10 and Lemma 5.12 respect to the point z € Qg
instead of the origin to find that for a sufficiently small universal constant
e € (0,1],if k (%)™ <&, then

1 2
7 o [V~ Wil do
¢

< _
6.4) < 73 ]{W)w (RS

c 2 2 2 2
+ R <’f]{_2r(z) \UI" dz + &l F|[ 100, (z)) + B “EEE[F]CN(Q!:(Z))> ,

][ U)? da
Q(2)

<c ][ U2 dz + ||F||? . + R?*" sup[F12, R
l o U] A ACNE) S [Flon @t (2))

|2 dx

and

(6.5)

1
for any z € Qg and 0 < p < r. For the simplicity, set & = (n_ls) ** which is a
universal constant.

If ER < p < R, then we have that éR < p < r < R. So (1.10) and (1.11)

holds when €R < p < R. So suppose that p < gR.
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If 0 < p <r < ER, then (1.10) and (1.11) hold from (6.4) and (6.5). So
assume that 0 < p < &R <r < R. Then by (6.4) and (6.5),
1 2
— U—U)g,»| dx
p2p Q,,(z)| ( )Qp( )|
< &
TR qune)

¢ 2 2 2 2
R (“]QER(Z) U dz + 6l Fll @ o)) + B ggg[F]cwczsR(z))) :

’U - (U)QER(Z)|2 dx

and

][ U da
Qp(z)

<c Ul de + ||F||% R +R2“supF2“ , .
(J{QER(Z)l | H ”L (Qzr(2) kEK[ ]C (Qzr(2)

So from that x and & is universal, (1.10) and (1.11) hold when 0 < p < R <
r < R. O

Proof of Corollary 1.8. Let u be a weak solution of
D, {Ag’;ﬂpguﬂ} = DoFl in Qog.

Since z € Qr and 0 < p < r < R in (1.10) and (1.11) were arbitrary, by
Proposition 6.1,

9 c 2 2 2 2
(6.6) [U}CM(QR) < R2u <][Q2R \U|" dz + ||F||L°°(Q2R) tR SEE[F]C”(Q)SR)> ’

and

07) 101 << (

By taking ¢ = Du, from Lemma 4.1 and Lemma 4.2, we have that

U dx + 1717 (q,,) + B SEE[F]QC"(Q'Z‘M) .
2R
(6.8) |Du(a)] < c[|U@)] + | F@)]]

for any z € Qg and
|Du(z) — Du(y)|

< c[\U(y) —U(z)|+ |F(y) — F(m)l}
(6.9) +e|[U@)|+F@)| [In(2) - m)] + |n(z) - 7(y) ]
sfv@i+ir@] Y |y - 43 w)

1<i,j<N 1<a,B<n



680

Y. KIM AND P. SHIN

for any x,y € Q% and [ € K. We have from Lemma 2.4 that 7 € C*(Q2R)
with the estimate that

(6.10) (7] i (@any < €R7™
Also we have that

(6.1

<c¢ 1<a,8<n,1<i,5<N)

bR g,

for any [ € K. With (6.10) and (6.11), we find from (6.9) that

Du(x) - Du(y)] < [ ) ([Ueriam + [Flevion)

) Wl=@m + I1Fll=(,n)

for any z,y € Q% and [ € K. So with (6.8), we find from (6.6) and (6.7) that

9 2 2 24 2
[1Du|7 o) < € (]{m U d + [ Fllze (@or) + B SEE[F]C“(Q;“R))

and
2 ¢ 2 2 2 2
Dy < gom (f, 0P+ 1V + B sp (P, )
for any I € K. Since |U| < ¢(|Du| + |F|) in Q2g, Corollary 1.8 holds. O
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