• Title/Summary/Keyword: elastic analysis

Search Result 4,669, Processing Time 0.07 seconds

The investigation crack problem through numerical analysis

  • Yaylaci, Murat
    • Structural Engineering and Mechanics
    • /
    • v.57 no.6
    • /
    • pp.1143-1156
    • /
    • 2016
  • This paper presents a comparative study of finite element method (FEM) and analytical method for the plane problem of a layered composite containing an internal perpendicular crack in literature. The layered composite consists of two elastic layers having different elastic constants and heights. External load is applied to the upper elastic layer by means o a rigid punch and the lower elastic layer rests on two simple supports. Numerical simulations are realized by the world wide code ANYS software. Two dimensional analysis of the problem is carried out and the results are verified by comparison with solutions reported in literature. Main goal of the numerical simulation is to investigate the normal stress ${\sigma}_x$(0, y), stress intensity factors at the crack factor and the crack opening displacements.

Elastic Buckling Characteristics of Corrugated Culverts of Orthotropic Material (직교 이방성 재료 파형 암거의 탄성 화굴 거동 특성)

  • Kim Tae-Yeon;Han Taek-Hee;Han Keum-Ho;Kang Jin-Ook;Lee Myeoung-Sub;Kang Young-Jong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.111-118
    • /
    • 2006
  • The elastic buckling strength of a corrugated culvert made of orthotropic material such as FRP was evaluated. The height and length of a corrugated wave and the thickness of the culvert were considered as factors affecting the buckling strength of the culvert. And also, the ratio of the longitudinal stiffness and transverse stiffness was considered as the parameter affecting on the buckling strength of the used orthotropic material. Buckling strengths of various corrugated culvert models with different shapes and stiffness ratio were evaluated by FE analyses and a formula to estimate the elastic buckling strength was suggested from the regression with FE analysis results. Analysis results show that a corrugated culvert has superior buckling strength to a general flat pipe and the suggested formula estimates accurate buckling strength of the corrugated culverts made of orthotropic material.

  • PDF

Alternative plate finite elements for the analysis of thick plates on elastic foundations

  • Ozgan, K.;Daloglu, Ayse T.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.1
    • /
    • pp.69-86
    • /
    • 2007
  • A four-noded plate bending quadrilateral (PBQ4) and an eight-noded plate bending quadrilateral (PBQ8) element based on Mindlin plate theory have been adopted for modeling the thick plates on elastic foundations using Winkler model. Transverse shear deformations have been included, and the stiffness matrices of the plate elements and the Winkler foundation stiffness matrices are developed using Finite Element Method based on thick plate theory. A computer program is coded for this purpose. Various loading and boundary conditions are considered, and examples from the literature are solved for comparison. Shear locking problem in the PBQ4 element is observed for small value of subgrade reaction and plate thickness. It is noted that prevention of shear locking problem in the analysis of the thin plate is generally possible by using element PBQ8. It can be concluded that, the element PBQ8 is more effective and reliable than element PBQ4 for solving problems of thin and thick plates on elastic foundations.

Vibration Analysis of Euler-Bernoulli Beam with Open Cracks on Elastic foundations Using Differential Transformation Method and Generalized Differential Quadrature Method (미분변환법과 일반화 미분구적법을 이용한 탄성 지반상의 열림 균열을 가진 Euler-Bernoulli 보의 진동 해석)

  • Hwang Ki-Sup;Yun Jong-Hak;Shin Young-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.3 s.246
    • /
    • pp.279-286
    • /
    • 2006
  • The main purpose of this paper is to apply differential transformation method(DTM) and generalized differential quadrature method(GDQM) to vibration analysis of Euler-Bernoulli beam with open cracks on elastic foundation. In this paper the concepts of DTM and GDQM were briefly introduced. The governing equation of motion of the beam with open cracks on elastic foundation is derived. The cracks are modeled by massless substitute spring. The effects of the crack location, size and the foundation constants, on the natural frequencies of the beam, are investigated. Numerical calculations are carried out and compared with previous published results.

Effect of Restraint of Pressure Induced Bending on Crack Opening for Circumferential Crack (원주방향 균열의 균열열림에 미치는 압력유기굽힘의 구속 효과)

  • Kim, Jin-Weon;Park, Chi-Yong
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.849-855
    • /
    • 2000
  • This study evaluated the effect of restraint of pressure induced bending(PIB) on crack mouth opening displacement(CMOD) for circumferential through-wall crack in pipe by using both elastic and elastic-plastic finite element analyses. The analyses results showed the restraint of PIB was decreased crack opening for a given crack length and tensile stress, and the effect was considerable for large crack and short restraint length. Also, the restraint effect on CMOD was independent on the variation in pipe diameter and decreased with increasing pipe thickness, and it depended on not total restraint length but short restraint length for non-symmetrically restrained. Additionally, the effect of restraint of PIB was more significant in the elastic-plastic analysis results compared with in the elastic analysis results.

  • PDF

Stability Analysis of Stiffened Plates on Elastic Foundations (탄성지반으로 지지된 보강판의 안정해석)

  • Lee, Byoung-Koo;Lee, Yong-Soo;Oh, Soog-Kyoung;Lee, Tae-Eun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.12
    • /
    • pp.947-955
    • /
    • 2003
  • This research analyzes the dynamic stability of stiffened plates on elastic foundations using the finite element method. For analyzing the stiffened plates, both the Mindlin plate theory and Timoshenko beam-column theory were applied. In application of the finite element method, 8-nodes serendipity element system and 3-nodes finite element system were used for plate and beam elements, respectively Elastic foundations were modeled as the Pasternak foundations in which the continuity effect of foundation is considered. In order to verify the theory of this study, solutions obtained by this analysis were compared with the classical solutions in open literature and experimental solutions. The dynamic stability legions of stiffened plates on Pasternak foundations were determined according to changes of in-plane stresses, foundation parameters and dimensions of stiffener.

Elastic-Plastic Finite Element Analysis of TiN Thin Film (TiN 박막의 탄소성 유한요소해석)

  • 김정실;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.331-340
    • /
    • 2001
  • Elastic-Plasitc Finite element analysis is peformed about the TiN coated medium. The normal contact is simulated by a rigid asperity pressing the surface of an elastic-plastic half-surface. The case of a surface film stiffer than the substrate is considered, and general solutions for the subsurface stress and deformation fields are presented for several coating thickness. Additionally, the critical normal loads for deformation in the substrate and coating fracture are calculated when the yield of TiN film follows the Maximum Principal Stress Theory and Von Mises Theory. The results can be subsumed in failure maps for TiN thin film on steel.

  • PDF

Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation

  • Timesli, Abdelaziz
    • Computers and Concrete
    • /
    • v.26 no.1
    • /
    • pp.53-62
    • /
    • 2020
  • Concrete is the most widely used substance in construction industry, so it's been required to improve its quality using new technologies. Nowadays, nanotechnology offers new frontiers for improving construction materials. In this paper, we study the stability analysis of the Single Walled Carbon Nanotubes (SWCNT) reinforced concrete cylindrical shell embedded in elastic foundation using the Donnell cylindrical shell theory. In this regard, we propose a new explicit analytical formula of the critical buckling load which takes into account the distribution of SWCNT reinforcement through the thickness of the concrete shell using the U, X, O and V forms and the elastic foundation using Winkler and Pasternak models. The rule of mixture is used to calculate the effective properties of the reinforced concrete cylindrical shell. The influence of diverse parameters on the stability behavior of the reinforced concrete shell is also discussed.

Dynamic analysis of gradient elastic flexural beams

  • Papargyri-Beskou, S.;Polyzos, D.;Beskos, D.E.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.6
    • /
    • pp.705-716
    • /
    • 2003
  • Gradient elastic flexural beams are dynamically analysed by analytic means. The governing equation of flexural beam motion is obtained by combining the Bernoulli-Euler beam theory and the simple gradient elasticity theory due to Aifantis. All possible boundary conditions (classical and non-classical or gradient type) are obtained with the aid of a variational statement. A wave propagation analysis reveals the existence of wave dispersion in gradient elastic beams. Free vibrations of gradient elastic beams are analysed and natural frequencies and modal shapes are obtained. Forced vibrations of these beams are also analysed with the aid of the Laplace transform with respect to time and their response to loads with any time variation is obtained. Numerical examples are presented for both free and forced vibrations of a simply supported and a cantilever beam, respectively, in order to assess the gradient effect on the natural frequencies, modal shapes and beam response.

A Numerical Approach to Effective Elastic Moduli of Solids with Microinclusions and Microvoids (미소 개재물과 기공을 갖는 고체의 유효탄성계수에 대한 수치적 접근)

  • Kang, Sung-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.852-859
    • /
    • 2009
  • For the analysis of solids containing a number of microinclusions or microvoids, in which the mechanical effect of each inclusion or void, a numerical approach is need to be developed to understand the mechanical behavior of damaged solids containing these defects. In this study, the simulation method using the natural element method is proposed for the analysis of effective elastic moduli. The mechanical effect of each inclusion or void is considered by controlling the material constants for Gaussian points. The relationship between area fraction of microinclusions or microvoids and effective elastic moduli is studied to verify the validity of the proposed method. The obtained results are in good agreement with the theoretical results such as differential method, self-consistent method, Mori-Tanaka method, as well as the numerical results by rigid body spring model.