• Title/Summary/Keyword: dragging activities

Search Result 9, Processing Time 0.024 seconds

Students' Mathematical Reasoning Emerging through Dragging Activities in Open-Ended Geometry Problems (개방형 기하 문제에서 학생의 드래깅 활동을 통해 나타난 수학적 추론 분석)

  • Yang, Eun Kyung;Shin, Jaehong
    • Journal of Educational Research in Mathematics
    • /
    • v.24 no.1
    • /
    • pp.1-27
    • /
    • 2014
  • In the present study, we analyze the four participating 9th grade students' mathematical reasoning processes in their dragging activities while solving open-ended geometry problems in terms of abduction, induction and deduction. The results of the analysis are as follows. First, the students utilized 'abduction' to adopt their hypotheses, 'induction' to generalize them by examining various cases and 'deduction' to provide warrants for the hypotheses. Secondly, in the abduction process, 'wandering dragging' and 'guided dragging' seemed to help the students formulate their hypotheses, and in the induction process, 'dragging test' was mainly used to confirm the hypotheses. Despite of the emerging mathematical reasoning via their dragging activities, several difficulties were identified in their solving processes such as misunderstanding shapes as fixed figures, not easily recognizing the concept of dependency or path, not smoothly proceeding from probabilistic reasoning to deduction, and trapping into circular logic.

  • PDF

Gifted Middle School Students' Genetic Decomposition of Congruent Transformation in Dynamic Geometry Environments (역동적 기하 환경에서 중등 영재학생들의 합동변환 활동에 대한 발생적 분해)

  • Yang, Eun Kyung;Shin, Jaehong
    • Journal of Educational Research in Mathematics
    • /
    • v.25 no.4
    • /
    • pp.499-524
    • /
    • 2015
  • In the present study, we propose four participating $8^{th}$ grade students' genetic decomposition of congruent transformation and investigate the role of their dragging activities while understanding the concept of congruent transformation in GSP(Geometer's Sketchpad). The students began to use two major schema, 'single-point movement' and 'identification of transformation' simultaneously in their transformation activities, but they were inclined to rely on the single-point movement schema when dealing with relatively difficult tasks. Through dragging activities, they could expand the domain and range of transformation to every point on a plane, not confined to relevant geometric figures. Dragging activities also helped the students recognize the role of a vector, a center of rotation, and an axis of symmetry.

Seventh-Grade Students' Recognition of Geometric Properties and Justification Steps Emerging through Their Construction Approaches (작도 접근 방식에 따른 중학생의 기하학적 특성 인식 및 정당화)

  • Yang, Eun Kyung;Shin, Jaehong
    • Journal of Educational Research in Mathematics
    • /
    • v.24 no.4
    • /
    • pp.515-536
    • /
    • 2014
  • In the present study, we analyze four seventh grade students' recognition of geometric properties and the following justification processes while their adopting different construction approaches in GSP(Geometer's Sketchpad). As the students recognized dependency and level-1 invariants by dragging activities, they determined their own construction approaches. Two students, who preferred robust construction, immediately recognized the path of a draggable point and provided step-1 justification. The other students attempted soft construction followed by their recognition of level-2 invariants and the path, and came to step-2 justification.

  • PDF

Exploring of the Possibility to Construct the Items for Computer-based Assessment in Mathematics : Focused on Fence Items in PISA2012 or 2015 within an Environment of Dynamic Geometric Software (컴퓨터기반수학평가(CBAM)의 문항 제작 가능성 탐색: 동적 기하소프트웨어 환경에서 PISA2012 또는 2015 울타리 문항을 중심으로)

  • Lee, Seo Bin;Kim, Sun Ho;Choi-Koh, Sang Sook
    • Journal of the Korean School Mathematics Society
    • /
    • v.20 no.3
    • /
    • pp.325-344
    • /
    • 2017
  • Since PISA2006, the computer based assessment in mathematics(CBAM) was introduced for the first times and at last PISA2015 used all items in CBAM for problem solving. In this study, we focused on which important properties were considered in constructing geometric 'fence items' used in PISA 2015 to find the future direction over our teacher education, especially for constructing 'computer based assessment items.' For the purpose of the study, we analyzed the fence items on three components such as dependency, invariant, and path found in dragging activities, within a computer environment using the dynamic Geometry Software, GSP. Also, for the future, we provided an open-ended problem related to the fence items, which we could use as the merit of computer-based environment.

  • PDF

Core Technologies of Superconducting Magnet for High-speed Maglev and R&D Activities in Korea (초고속 Maglev용 초전도 마그넷 요소 기술 및 국내 연구 개발 현황)

  • Lee, Chang-Young;Kang, Bu-Byoung;Han, Young-Jae;Sim, Ki-Deok;Park, Dong-Keun;Ko, Tae-Kuk
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1454-1460
    • /
    • 2009
  • Ultra-speed tube train, which runs in vacuum atmosphere to overcome aero-dynamic dragging force, is considered as a high-speed ground transportation system to back up long-distance air travel. To realize the ultra-speed tube train, feasibility study of currently available Maglev technologies especially for propulsion and levitation system is needed. Propulsion by linear synchronous motor(LSM) and levitation by electro-dynamic suspension(EDS) which are utilized in the Japan's MLX system could be one of candidated technologies for ultra-speed tube train. In the LSM-EDS system, the key component is superconducting magnet, and its reliability and performance is very important to guarantee the safe-operation of Maglev. As the initiative of the feasibility study, this paper deals with the basic structure of superconducting magnet and core technologies to design and operate it. And by surveying the current R&D achievement in Korea, the nation's capability to develop advanced superconducting magnet for Maglev is presented.

  • PDF

Vessel traffic geometric probability approaches with AIS data in active shipping lane for subsea pipeline quantitative risk assessment against third-party impact

  • Tanujaya, Vincent Alvin;Tawekal, Ricky Lukman;Ilman, Eko Charnius
    • Ocean Systems Engineering
    • /
    • v.12 no.3
    • /
    • pp.267-284
    • /
    • 2022
  • A subsea pipeline designed across active shipping lane prones to failure against external interferences such as anchorage activities, hence risk assessment is essential. It requires quantifying the geometric probability derived from ship traffic distribution based on Automatic Identification System (AIS) data. The actual probability density function from historical vessel traffic data is ideal, as for rapid assessment, conceptual study, when the AIS data is scarce or when the local vessels traffic are not utilised with AIS. Recommended practices suggest the probability distribution is assumed as a single peak Gaussian. This study compares several fitted Gaussian distributions and Monte Carlo simulation based on actual ship traffic data in main ship direction in an active shipping lane across a subsea pipeline. The results shows that a Gaussian distribution with five peaks is required to represent the ship traffic data, providing an error of 0.23%, while a single peak Gaussian distribution and the Monte Carlo simulation with one hundred million realisation provide an error of 1.32% and 0.79% respectively. Thus, it can be concluded that the multi-peak Gaussian distribution can represent the actual ship traffic distribution in the main direction, but it is less representative for ship traffic distribution in other direction. The geometric probability is utilised in a quantitative risk assessment (QRA) for subsea pipeline against vessel anchor dropping and dragging and vessel sinking.

A Study on the Safety Measures for Typhoon Shelter in Jinhae Bay Based on AHP Assessment (AHP 기법 기반 진해만 태풍 피항지 내 안전대책에 관한 연구)

  • Kim, Ni-Eun;Lee, Myoung-Ki;Camliyurt, Gokhan;Park, Do-Hyeong;Kim, Dae-Won;Park, Young-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.507-514
    • /
    • 2022
  • Jinhae Bay is used as a major typhoon shelter in the southeastern region of Korea. However, when a typhoon strikes, the Jinhae Bay is facing the possibility of marine accidents caused by dragging anchors and the increased number of ships. This paper suggested ways to safely and efficiently manage the port of Jinhae Bay when a typhoon strikes from Vessel traffic service operators in the sea, derived relative importance by conducting an Analytic Hierarchy Process assessment to ship operators, and suggested safety measures reflecting manager and user opinions. In order to select safety measures factors for the AHP survey, VTS operators analyzed the evaluation of measures when a typhoon strikes in Jinhae Bay. As a result of conducting a survey based on the selected safety measure factors, it was found that ship operators consider the safety of ships more than twice as important as efficient management, and comprehensively consider them in the order of management of evacuated ships, management of anchorage area, management of evacuation information, preparation regulations and guidelines, improvement of system equipment, education, publicity, and notification activities. Through the measures and relative importance identified in this paper, it is believed that Jinhae Bay can serve as the basis for safely and efficiently managing typhoon shelters.

A study on the use of continuous spectrum in problem solving in a dynamic geometry environment (동적 기하 환경의 문제 해결 과정에서 연속 스펙트럼 활용에 대한 소고)

  • Heo, Nam Gu
    • The Mathematical Education
    • /
    • v.60 no.4
    • /
    • pp.543-554
    • /
    • 2021
  • The dynamic geometric environment plays a positive role in solving students' geometric problems. Students can infer invariance in change through dragging, and help solve geometric problems through the analysis method. In this study, the continuous spectrum of the dynamic geometric environment can be used to solve problems of students. The continuous spectrum can be used in the 'Understand the problem' of Polya(1957)'s problem solving stage. Visually representation using continuous spectrum allows students to immediately understand the problem. The continuous spectrum can be used in the 'Devise a plan' stage. Students can define a function and explore changes visually in function values in a continuous range through continuous spectrum. Students can guess the solution of the optimization problem based on the results of their visual exploration, guess common properties through exploration activities on solutions optimized in dynamic geometries, and establish problem solving strategies based on this hypothesis. The continuous spectrum can be used in the 'Review/Extend' stage. Students can check whether their solution is equal to the solution in question through a continuous spectrum. Through this, students can look back on their thinking process. In addition, the continuous spectrum can help students guess and justify the generalized nature of a given problem. Continuous spectrum are likely to help students problem solving, so it is necessary to apply and analysis of educational effects using continuous spectrum in students' geometric learning.

Interactions in a Small Group Modeling Environment with Excel (엑셀을 활용한 소그룹 모델링에서의 상호작용 -중학교 2학년 대수 영역을 중심으로-)

  • Lew Hee Chan;Kim Ji Yoon
    • Journal of Educational Research in Mathematics
    • /
    • v.15 no.1
    • /
    • pp.75-105
    • /
    • 2005
  • This study explored a mathematical modeling flow and the effect of interactions among students and between a student and Excel on modeling in a small group modeling environment with Excel. This is a case study of three 8th graders' modeling activity using Excel during their extra lessons. The conclusions drawn from this study are as follows: First, small group modeling using Excel was formed by formulating 4∼10 modeling cycles in each task. Students mainly formed tables and graphs and refined and simplified these models. Second, students mainly formed tables, algebraic formulas and graphs and refined tables considering each variable in detail by obtaining new data with inserting rows. In tables, students mainly explored many expected cases by changing the values of the parameters. In Graphs, students mainly identified a solution or confirmed the solution founded in a table. Meanwhile, students sometimes constructed graphs without a purpose and explored the problem situations by graphs mainly as related with searching a solution, identifying solutions that are found in the tables. Thus, the teacher's intervention is needed to help students use diverse representations properly in problem situations and explore floatingly and interactively using multi-representations that are connected numerically, symbolically and graphically. Sometimes students also perform unnecessary activities in producing data by dragging, searching a solution by 'trial and error' and exploring 'what if' modeling. It is considered that these unnecessary activities were caused by over-reliance on the Excel environment. Thus, the teacher's intervention is needed to complement the Excel environment and the paper-and-pencil environment properly.

  • PDF