ABSTRACT

Ultra-speed tube train, which runs in vacuum atmosphere to overcome aero-dynamic dragging force, is considered as a high-speed ground transportation system to back up long-distance air travel. To realize the ultra-speed tube train, feasibility study of currently available Maglev technologies especially for propulsion and levitation system is needed. Propulsion by linear synchronous motor (LSM) and levitation by electro-dynamic suspension (EDS) which are utilized in the Japan’s MLX system could be one of candidate technologies for ultra-speed tube train. In the LSM-EDS system, the key component is superconducting magnet, and its reliability and performance is very important to guarantee the safe-operation of Maglev.

As the initiative of the feasibility study, this paper deals with the basic structure of superconducting magnet and core technologies to design and operate it. And by surveying the current R&D achievement in Korea, the nation's capability to develop advanced superconducting magnet for Maglev is presented.

1. 서론

미래의 항공수요를 보완할 수, 경거리 욕구 초속도 교통수단으로서 초속도투브 브레인에 대한 관심이 국내외적으로 증대되고 있다. 초속도 브로브레인은 일정 범위의 확장을 이루고 있는 기상 공중, 구조물 상에 설치하여 음력 주행을 촉진하기 위해서는 초속도 자기부상철도(Maglev) 기술의 개발이 반드시 필요하며, 독일의 Transrapid 기술로 대표되는 LSM-EMS(상강도 휘던신방식) 방식과 일본의 MLX 기술로 대표되는 LSM-EDS(초연도 반씩방식) 방식이 초속도 자기부상철도 기술로 검토되고 있다. 이 중 LSM-EDS방식은 LSM-EMS 방식에 비해 차량의 자기부상과 안전을 위한 병의 제어장치가 필요하지 않는다는 특징 때문에 시속 700km/h이상의 초속도 투브레인의 구현에 기술적 이점이 있으나 차량의 추진 및 부상에 충분한 여지를 만들기 위해 고차장의 초경도 마그넷의 탐색이 필요하다. 따라서 LSM-EDS 방식에 의한 초속도 투브레인을 구현하기 위해서는 신뢰성 있는 고장정 초경도 마그넷의 개발이 기술적 핵심 이슈가 되고 있다. 본 논문에서는 초속도 투브레인 개발을 위한 기술적 타당성 분석을 목적으로 초경도 마그넷의 주요요소 기술과 일본의 Maglev용 초경도 마그넷 기술 대비 국내의 초경도 마그넷 기술 역량을 살펴보고자 한다.
2. 본 문

2.1 초전도 마그넷 전류 및 주요 요소 기술

초전도 마그넷이 정상적으로 동작시키고 원하는 자세를 잃기 위해서는 마그넷을 구성하는 초전도 섬유를 초전도 상태로 유지하기 위한 임계값을 만족시켜야 한다. 이 임계값은 임계전류(Jc), 임계온도(Tc), 임계압력(Bo)으로서 초전도 상태가 이 세 가지 임계조건 미만에서 동작하도록 하는 코일 형상의 최적 설계가 필요하다. 다음은 초전도체의 초전도 상태를 유지하고 임계점 유도최소화하기 위한 영전도 구조와 극저온 냉각이 필요하다. 냉각방식은 액체천천이나 액체첨소 등의 방식을 이용하는 방식과 냉각을 이용하지 않고 열전도에 의한 냉각방식이 있으며 냉각효율을 최대화 할 수 있는 냉각시스템의 설계가 중요하다. 열전달을 복사, 내부 그리고 전도의 경우에 의한 소프트 마그넷 내부로 집합하며, 열전달을 최소화 할 수 있는 마그넷 콘덴서(Cryostat) 및 전류연결선(Current lead)의 설계가 필요하다.

초전도 마그넷에 갖는 가장 중요한 특징은 임계한 자체장을 잃기까지 초전도 마그넷에 전류를 흘려 준 후 외부전원을 제거하면 코일에는 영구전류가 호르므로 이 전류에 의해 자기가 지속적으로 유지된다. 이것은 초전도실에서 전기 저항이 없기 때문에 기울인 현상이며 자기장을 유지하기 위하여 외부에서 전원을 지속적으로 공급해야 하는 상태로 마그넷과 구별되는 특징이다. 초전도 마그넷의 기본 구조 및 운전방법은 그림 2와 같다.

※ 운전 절차

스위치③ Off / 전류공급 On
(스위치 ①On)
⇒ 코일에 정격전류종전 확인
⇒ 스위치② On
⇒ 전류공급 off(스위치① Off)
⇒ 영구전류문전 확인

그림 2. 초전도 마그넷 운전 원리
그림2에서 초전도 마그넷에 사용되는 스위치는 초전도성 앰플러 설치하여 설계에 의한 원리이다. 실제 초전도 마그넷에서는 초전도체와 초전도체, 초전도체와 앰플러 간의 접합부분이 필요로 존재하며 이 접합부분을 전기적 방면에 영구점유로 윤활하기도 시간에 따라 접착 전류가 감소하게 된다. 이러한 전류 감소율이 자기부상열차용 초전도 마그넷의 성능을 좌우하는 요소가 된다. 따라서 전류감소율을 최소화 할 수 있는 초전도 스위치 설계가 필요하다. 이것은 초전도 마그넷의 설계에 있어서 필요한 기술이며, 자기부상열차에 탑재되는 초전도 마그넷의 경우에는 LSM 중심 코일로부터 작용하는 외부자장에 대한 고려와 차량의 고속 주행에 따라 전동에 대한 성능이 확보될 수 있도록 설계되어야 한다. 자기부상열차용 초전도 마그넷의 설계를 위한 중요기술을 부분화하면 다음과 같다.

<table>
<thead>
<tr>
<th>향 목</th>
<th>설계 고려 변수</th>
</tr>
</thead>
<tbody>
<tr>
<td>초전도 코일 설계 기술</td>
<td>코일크기, 최대 자장, 기계적 응력, 전동 특성, 영구점유도온전특성</td>
</tr>
<tr>
<td>열전연 구조(Cryostat) 기술</td>
<td>마그넷 크기, 열전입량</td>
</tr>
<tr>
<td>냉각시스템 기술</td>
<td>냉각용량, 두께</td>
</tr>
<tr>
<td>초전도 스위치 기술</td>
<td>접합지향, 스위치 응답력, 전류감차율</td>
</tr>
<tr>
<td>전류 도입선 설계 기술</td>
<td>열전입량, 단면적</td>
</tr>
</tbody>
</table>

2.3 초전도 선재 개발 현황

1911년 Oumes가 발전한 수온에서의 초전도 현상부터 지금까지의 초전도체의 발전 및 개발현황은 그림 3과 같다. 그러나 다양한 초전도체의 개발에도 불구하고 제료의 안정성 및 설계화 공정능력등의 이유로 4K이하의 냉각온도에서 초전도성을 갖는 NbTi 소재단인 자기공명영상장치(MRI), 임자각속기 등의 초전도 마그넷소재로 이용되어 왔다. 그러나 1986년에 액체질소온도인 77K 이상에서도 초전도성을 갖는 고온초전도체의 발전은 그동안 상용화를 거쳐와있던 큰 백인 임계온도문제를 해결함으로써 다양한 초전도 기기의 상용화 개발 가능성을 제시하게 되었다.
Bismuth화합물계열의 Bi6Sr2Ca1Cu2O8 (BSCCO)는 초전도기체에 적응 가능한 성분으로 이미 상용화 개발 되었으며, BSCCO 선체를 사용한 초전도 커넥터, 초전도판촉기, 초전도 모터 등이 개발 중에 있다. 그러나 BSCCO의 경우 제조공정과정상 고온의 은(Ag)을 로제로 사용하기 때문에 초전도기계 제작비용의 80%이 상을 차지하는 초전도 선체 가격의 하락에 한계가 있다. 특히 BSCCO선체의 재생특성의 저온초전도체인 NbTi보다도 높아지기 때문에 재생특성을 필요로 하는 초전도 마그넷으로는 불리한 단점이 있다.

2세대 고온초전도체인 Y1Ba2Cu3O7(YBCO : Coated Conductor)는 초전도 재제가 가격을 높게 하지 않도록 하는 완벽으로 초전도 기기의 제작 비용을 줄기적으로 줄일 수 있는 초전도체이다. 특히 BSCCO 선체에 비교해 높은 전도밀도를 가질 뿐 아니라, 자장특성 및 기계적 강도가 우수하기 때문에 초전도 마그넷용에 큰 이점이 있다. YBCO의 경우 암체전류가 높으므로 초전도기계의 제작에 적합한 수준까지 양산화 공정 기술의 개발이 가장 큰 전단이다. 2세대 선체제조기술은 미국의 IGC Superpower사와 AMSC사가 기술의 선두에 있으며 최근 Superpower사의 발표에 따르면 lc=153A/cm. 까지 1311 m까지 제조가 가능한 양산화 공정을 달성하였다고 한다. 도표 2는 1세대 고온초전도체인 BSCCO와 2세대 고온초전도체인 YBCO의 성능을 비교하고 있다.

<table>
<thead>
<tr>
<th>항목</th>
<th>BSCCO</th>
<th>YBCO</th>
</tr>
</thead>
<tbody>
<tr>
<td>선체 폭</td>
<td>Without SUS Tape</td>
<td>4.5 mm</td>
</tr>
<tr>
<td>선체의 두께</td>
<td>0.30 mm</td>
<td>0.30 mm</td>
</tr>
<tr>
<td>최대 저조 기이</td>
<td>1500m 이상</td>
<td>500 m 이상</td>
</tr>
<tr>
<td>암체전류 (77K, Self-field)</td>
<td>180A 이하</td>
<td>180A 이하</td>
</tr>
<tr>
<td>최대 허용 인장장소</td>
<td>130 MPa</td>
<td>270 MPa</td>
</tr>
<tr>
<td>최대 허용 급판반경</td>
<td>70mm</td>
<td>60mm</td>
</tr>
</tbody>
</table>

2.4 일본의 MLX용 초전도 마그넷 개발 현황

일본의 MLX용 초전도 마그넷은 약 1000~1500회의 인선수를 가지는 4개의 Racetrack형 코일의 N-S-N-S의 극반대가 되도록 교차접촉으로 연결된 상태에서 500A의 전류를 통과하여 4.7T의 자장을 발생시킬 수 있는 구조로 제작되었다. 루프효과기록팀으로는 581km/h는 저온 초전도체인 NbTi 선체를 사용하고 역행방향을 너머로 하는 저온초전도 마그넷을 달성한 주요시험에서 달성되었으며, 2008년부터는 초전도마그넷의 경향화 및 구조의 단순화를 목적으로 1세대 고온초전도 선체인 BSCCO를 사용한 고온초전도 마그넷을 개발하였고, 2008년 주요시험에 성공함으로써 고온초전도 마그넷에 의한 초고속 자기부상열 차의 실현 가능성을 확인하였다.

(a) 고온초전도 마그넷 (b) 저온초전도 마그넷

그림 5. 일본 MLX용 초전도 마그넷

1457
그러나 기존 저온(NbTi) 초전도 마그넷에 비해 냉각비용측면에서의 이점에도 불구하고 초전도선체의 가격 때문에도 BSCCO선체를 사용한 고온 초전도마그넷의 제작 비용 절감 효과는 그리 크지 않았다고 한다. 최근에는 YBCO 고온초전도선체의 급속한 성능 향상에 따라 YBCO 선체를 사용한 고온 초전도 마그넷의 개발에 박차가 가고 있으며, YBCO 선체에 의한 고온초전도 마그넷이 개발될 경우 차량의 성능향상 및 초고속 Maglev의 실험비용을 획기적으로 줄일 수 있을 것으로 기대된다. 현재 마그넷 설계시 필요한 YBCO 선체의 냉각조건, 주변장착특성, 그리고 차량주행 동특성등의 운전환경을 고려한 기본특성에 대한 연구가 진행되고 있다.

표 3. MLX용 고온 및 저온 초전도 마그넷 비교

<table>
<thead>
<tr>
<th></th>
<th>저온초전도 마그넷</th>
<th>고온초전도 마그넷</th>
</tr>
</thead>
<tbody>
<tr>
<td>기자력</td>
<td>700~750kA</td>
<td>750kA</td>
</tr>
<tr>
<td>초전도 코일 수</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>코일 형상</td>
<td>Racetrack</td>
<td>Racetrack</td>
</tr>
<tr>
<td>Coil dimensions</td>
<td>1.070 X 500mm</td>
<td>1.070 X 500mm</td>
</tr>
<tr>
<td>Straight part</td>
<td>570mm</td>
<td>570mm</td>
</tr>
<tr>
<td>강력전류</td>
<td>500A</td>
<td>544A</td>
</tr>
<tr>
<td>전선수</td>
<td>1,400~1,500 회</td>
<td>1,380 회</td>
</tr>
<tr>
<td>초전도재</td>
<td>NbTi</td>
<td>BSCCO</td>
</tr>
<tr>
<td>전류감쇠율</td>
<td>0.1%/day 이하</td>
<td>1%/day 이하</td>
</tr>
<tr>
<td>초전도냉각온도</td>
<td>4.2 K</td>
<td>20 K 이하</td>
</tr>
<tr>
<td>냉각방식</td>
<td>액체질소, 액체헬륨</td>
<td>전도냉각(냉매Free)</td>
</tr>
<tr>
<td>냉동기</td>
<td>GM cryocooler</td>
<td>GM-type 2-stage pulse-tube cryocooler</td>
</tr>
</tbody>
</table>

2.4 초전도 마그넷 국내 기술 개발 현황

국내에서는 1992년에 한국전기연구원이 러시아와 공동연구로 추진한 "고자장(8T급) 발광용 초전도 자석개발연구"를 시작으로 저온 초전도 마그넷에 대한 기초연구가 시작되었다. 이 연구를 통하여 NbTi 선체를 이용한 저온초전도마그넷의 기본 설계 및 제작기술을 확립하고, 검사 그 성능을 향상시키기 17T 까지도 가능한 초전도 마그넷의 개발에까지 성공하였다.

저온초전도 마그넷에 대한 본격적인 기술개발은 국가R&D사업으로 1995년부터 추진한 KSTAR(Korea Superconducting Tokamak Advanced Research) 프로젝트가 개발이 되었다. KSTAR 프로젝트는 현재의 우라늄기반의 원자력발전을 대체할 수 있는 미래 에너지원으로서 핵융합발전의 핵심이 되는 차세대 초전도 토팅막 장치를 국내 기술로 개발하고자 하는 사업이다. 이 사업은 통하여 초전도 마그넷의 설계 및 해석, 극저온 냉각시스템 개발 및 마그넷 운전 등 초전도 마그넷의 주요 핵심기술을 선진국과 대등한 정도로 확보할 수 있게 되었다.

국내의 고온초전도체 및 고온 초전도기기에 대한 기술개발은 21C 프리미엄연구개발사업인 차세대 초전도 응용기기 개발사업(DAPAS사업)을 통해 본격적으로 시작되었다. 2001년부터 2010년까지 10년에 걸쳐 년간 100억원 규모의 연구비가 부담된 사업으로서 YBCO 고온초전도선체 개발을 비롯하여, 초전도 케이블, 초전도판류기, 초전도 페터형, 초전도모터등 실용화 적용이 가능한 수준의 고온초전도 전력기기의 개발을 최종 목표로 하고 있다.
그림 6. KSTAR 초절도 토폴라 강치

그림 7. DAPAS 사업 계획

현재, 3단계 2차년도 연구가 진행중에 있으며 초절도 케이블 및 초절도 한류기는 한전의 설계량 규제 없이 준비 중에 있다. DAPAS 사업을 통해 확보된 고온초절도기기 운영기술, 단열(Cryostat) 및 냉각시스템 기술, 저전차 전류도입부 기술, 최적화시스템 설계기술 등은 Maglev용 고온초절도 마그넷 개발에 필요한 핵심기술로서 중요한 역할을 할 수 있는 기술들이라 할 수 있다. 특히 2단계 고온초절도선체의 국산화 개발은 그동안 국외 업체로부터 독점 공급받던 핵심소재의 국외의존을 탈피할 수 있는 기회이며 마련되었다고 할 수 있다.

그동안 높아온 고온초절도 마그넷분야의 기술을 기반으로 하여, 2007년부터 국내 대학을 중심으로 교육과학부의 지원을 받아 미래 점진 마이크로로 분야의 핵심기술인 GHz급 초고자장 NMR용 고온초절도 마그넷 기조 연구가 진행 중에 있다. 또한 2008년에는 국내 최초로 냉매을 사용하지 않는 전도 neger방식으로 2T급 고온초절도마그넷을 한국전기연구원에서 개발하기도 하였다.

그림 8. 전도 neger방식의 2T급 고온초절도마그넷(한국전기연구원)

3. 결론

그동안 일본의 초고속 자기부상열차(MLX)는 부상 및 주전시스템의 핵심부품인 초절도 마그넷의 신뢰성 및 제작비용이 실효화의 결론으로 인식되어 왔다. 그러나 최근의 기술 개발 성과에 따르면 이미 400,000km이상의 주행시험을 통하여 저온초절도 마그넷 신뢰성은 충분히 검증되었다. 또한 비용저감을 위한 노력으로서 1세대 고온초절도로제 작동된 고온초절도마그넷으로서 주행시험을 성공적으로 완수하고 2세대 고온초절도체인 YBCO 단계를 이용한 초절도마그넷 개발에 착수하였다. YBCO 단계를 이용한 고온초절도마그넷이 개발될 경우, 당초 초고속 자기부상열차의 건설비용을 횡가적으로 줄일 수 있을 것 으로 기대된다. KSTAR, 21C 프런티어사업 등을 통해 확보된 국내의 초절도 마그넷기술은 이미 차세대
에너지 및 의료기기분야에 발급 적응중에 있으며 국내에서도 YBCO 체계를 사용한 고온초전도 마그넷의 기반핵심기술들을 확보한 것으로 판단된다. 향후 LSM-EDS 방식에 의한 초고속 튜브트레인을 구현할 경우 국내의 복잡기술로 고온초전도 마그넷을 개발할 수 있는 충분한 기술적 역량을 보유하고 있는 것으로 분석된다.

참고문헌

1. 김석찬, 한승엽(2004), "조전도 공학 개론", 대영사
2. 한병성, 홍중선, 박성진(1997), "조전도 공학", 동일출판사
3. 권영길 (2006), "고장생활용 조전도 마그네타의 개발현황 및 전망" 조전도 저온공학회 학회지, 3권, 2호
4. Motohito Igarashi 외 (2005), "Persistent Current HTS Magnet Cooled by Cryocooler(1) - Project Overview", IEEE Tran. on Appl. Supercon., Vol.15, No.2, June