• Title/Summary/Keyword: delta sigma modulator

Search Result 148, Processing Time 0.02 seconds

A 2.5 V 109 dB DR ΔΣ ADC for Audio Application

  • Noh, Gwang-Yol;Ahn, Gil-Cho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.4
    • /
    • pp.276-281
    • /
    • 2010
  • A 2.5 V feed-forward second-order deltasigma modulator for audio application is presented. A 9-level quantizer with a tree-structured dynamic element matching (DEM) was employed to improve the linearity by shaping the distortion resulted from the capacitor mismatch of the feedback digital-toanalog converter (DAC). A chopper stabilization technique (CHS) is used to reduce the flicker noise in the first integrator. The prototype delta-sigma analogto-digital converter (ADC) implemented in a 65 nm 1P8M CMOS process occupies 0.747 $mm^2$ and achieves 109.1 dB dynamic range (DR), 85.4 dB signal-to-noise ratio (SNR) in a 24 kHz audio signal bandwidth, while consuming 14.75 mW from a 2.5 V supply.

Balanced Comparator and Delta-Sigma Modulator with High-Tc Multilayer RSFQ Logic Circuits (고온초전도 다층박막 RSFQ 회로를 이용한 균형잡힌 비교기와 델타-시그마 모듈레이터)

  • Chong, Yon-Uk;Khim, Jeong-Gu;Ruck, B.;Dittmann, R.;Horstmann, C.;Engelhardt, A.;Wahl, G.;Oelze, B.;Sodtke, E.
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.48-53
    • /
    • 1999
  • We demonstrate small-scale high-T$_c$ superconductor RSFQ(Rapid Single Flux Quantum) circuits using multilayer bicrystal technology. An RSFQ balanced comparator is demonstrated with good current resolution, and its operating conditions are discussed in some detail. A single-loop delta-sigma modulator is realized adding a feedback loop to the comparator. The effect of the feedback is confirmed by dc measurement and simulation. A design of an RSFQ toggle flip-flop with the same multilayer bicrystal technology is suggested.

  • PDF

A High-Efficiency Driver Design for Mobile Digital Audio Speakers (모바일용 디지털 오디오 스피커를 위한 고효율 드라이버 설계)

  • Kim, Yong-Serk;Rim, Min-Joon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.1
    • /
    • pp.19-26
    • /
    • 2011
  • In this paper, we designed Interpolation FIR(Finite Impulse Response) filter and 1-bit SDM(Sigma- Delta Modulator) for small digital audio speaker, which has low power consumption and high output characteristics. In order to achieve high linearity and low distortion performance of the systems, we adopt Type I Chevychev FIR filter which has equiripple characteristics in the pass band and proposed high efficient FIR filter structure. SDM is the most efficient modulation technique among the noise shaping techniques. In this paper, we implemented SDM using CIFB(Cascade of Intergrators, Feed-Back) which is generally used in DAC of small digital audio speakers. The proposed SDM structure can achieve high SNR, high-efficiency characteristics and low power consumption in mobile devices. Also considering manufacture of SoC(System on Chip), we performed simulation with Matlab and Verilog HDL to obtain optimal number of operational bits and verified a good experimental results.

The DWA Design with Improved Structure by Clock Timing Control (클록 타이밍 조정에 의한 개선된 구조를 가지는 DWA 설계)

  • Kim, Dong-Gyun;Shin, Hong-Gyu;Cho, Seong-Ik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.4
    • /
    • pp.401-404
    • /
    • 2010
  • In multibit Sigma-Delta Modulator, DWA(Data Weighted Averaging) among the DEM(Dynamic Element Matching) techniques was widely used to get rid of non-linearity that caused by mismatching of unit capacitor in feedback DAC path. this paper proposed the improved DWA architecture by adjusting clock timing of the existing DWA architecture. 2n Register block used for output was replaced with 2n S-R latch block. As a result of this, MOS Tr. can be reduced and extra clock can also be removed. Moreover, two n-bit Register block used to delay n-bit data code is decreased to one n-bit Register. In order to confirm characteristics, DWA for the 3-bit output with the proposed DWA architecture was designed on 0.18um process under 1.8V supply. Compared with the existing architecture. It was able to reduce the number of 222 MOS Tr.

A Two-Point Modulation Spread-Spectrum Clock Generator With FIR-Embedded Binary Phase Detection and 1-Bit High-Order ΔΣ Modulation

  • Xu, Ni;Shen, Yiyu;Lv, Sitao;Liu, Han;Rhee, Woogeun;Wang, Zhihua
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.4
    • /
    • pp.425-435
    • /
    • 2016
  • This paper describes a spread-spectrum clock generation method by utilizing a ${\Delta}{\Sigma}$ digital PLL (DPLL) which is solely based on binary phase detection and does not require a linear time-to-digital converter (TDC) or other linear digital-to-time converter (DTC) circuitry. A 1-bit high-order ${\Delta}{\Sigma}$ modulator and a hybrid finite-impulse response (FIR) filter are employed to mitigate the phase-folding problem caused by the nonlinearity of the bang-bang phase detector (BBPD). The ${\Delta}{\Sigma}$ DPLL employs a two-point modulation technique to further enhance linearity at the turning point of a triangular modulation profile. We also show that the two-point modulation is useful for the BBPLL to improve the spread-spectrum performance by suppressing the frequency deviation at the input of the BBPD, thus reducing the peak phase deviation. Based on the proposed architecture, a 3.2 GHz spread-spectrum clock generator (SSCG) is implemented in 65 nm CMOS. Experimental results show that the proposed SSCG achieves peak power reductions of 18.5 dB and 11 dB with 10 kHz and 100 kHz resolution bandwidths respectively, consuming 6.34 mW from a 1 V supply.

Low-Power and High-Efficiency Class-D Audio Amplifier Using Composite Interpolation Filter for Digital Modulators

  • Kang, Minchul;Kim, Hyungchul;Gu, Jehyeon;Lim, Wonseob;Ham, Junghyun;Jung, Hearyun;Yang, Youngoo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.1
    • /
    • pp.109-116
    • /
    • 2014
  • This paper presents a high-efficiency digital class-D audio amplifier using a composite interpolation filter for portable audio devices. The proposed audio amplifier is composed of an interpolation filter, a delta-sigma modulator, and a class-D output stage. To reduce power consumption, the designed interpolation filter has an optimized composite structure that uses a direct-form symmetric and Lagrange FIR filters. Compared to the filters with homogeneous structures, the hardware cost and complexity are reduced by about half by the optimization. The coefficients of the digital delta-sigma modulator are also optimized for low power consumption. The class-D output stage has gate driver circuits to reduce shoot-through current. The implemented class-D audio amplifier exhibited a high efficiency of 87.8 % with an output power of 57 mW at a load impedance of $16{\Omega}$ and a power supply voltage of 1.8 V. An outstanding signal-to-noise ratio of 90 dB and a total harmonic distortion plus noise of 0.03 % are achieved for a single-tone input signal with a frequency of 1 kHz.

Design of the Low-Power Continuous-Time Sigma-Delta Modulator for Wideband Applications (광대역 시스템을 위한 저전력 시그마-델타 변조기)

  • Kim, Kunmo;Park, Chang-Joon;Lee, Sanghun;Kim, Sangkil;Kim, Jusung
    • Journal of IKEEE
    • /
    • v.21 no.4
    • /
    • pp.331-337
    • /
    • 2017
  • In this paper, we present the design of a 20MHz bandwidth 3rd-order continuous-time low-pass sigma-delta modulator with low-noise and low-power consumption. The bandwidth of the system is sufficient to accommodate LTE and other wireless network standards. The 3rd-order low-pass filter with feed-forward architecture achieves the low-power consumption as well as the low complexity. The system uses 3bit flash quantizer to provide fast data conversion. The current-steering DAC achieves low-power and improved sensitivity without additional circuitries. Cross-coupled transistors are adopted to reduce the current glitches. The proposed system achieves a peak SNDR of 65.9dB with 20MHz bandwidth and power consumption of 32.65mW. The in-band IM3 is simulated to be 69dBc with 600mVp-p two tone input tones. The circuit is designed in a 0.18-um CMOS technology and is driven by 500MHz sampling rate signal.

A CMOS Band-Pass Delta Sigma Modulator and Power Amplifier for Class-S Amplifier Applications (S급 전력 증폭기 응용을 위한 CMOS 대역 통과델타 시그마 변조기 및 전력증폭기)

  • Lee, Yong-Hwan;Kim, Min-Woo;Kim, Chang-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.1
    • /
    • pp.9-15
    • /
    • 2015
  • A CMOS band-pass delta-sigma modulator(BPDSM) and cascode class-E power amplifier have been developed CMOS for Class-S power amplifier applications. The BPDSM is operating at 1-GHz sampling frequency, which converts a 250-MHz sinusoidal signal to a pulse-width modulated digital signal without the quantization noise. The BPDSM shows a 25-dB SQNR(Signal to Quantization Noise Ratio) and consumes a power of 24 mW at an 1.2-V supply voltage. The class-E power amplifier exhibits an 18.1 dBm of the maximum output power with a 25% drain efficiency at a 3.3-V supply voltage. The BPDSM and class-E PA were fabricated in the Dongbu's 110-nm CMOS process.

Design of a Spread Spectrum Clock Generator for DisplayPort (DisplayPort적용을 위한 대역 확산 클록 발생기 설계)

  • Lee, Hyun-Chul;Kim, Tae-Ho;Lee, Seung-Won;Kang, Jin-Ku
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.7
    • /
    • pp.68-73
    • /
    • 2009
  • This paper describes design and implementation of a spread spectrum clock generator (SSCG) for the DisplayPort. The proposed architecture generates the spread spectrum clock using a sigma-delta fractional-N PLL. The SSCG uses a digital End order MASH 1-1 sigma-delta modulator and a 9bit Up/Dn counter. By using MASH 1-1 sigma-delta modulator, complexity of circuit and chip area can be reduced. The advantage of sigma-delta modulator is the better control over modulation frequency and spread ratio. The SSCG generates dual clock rates which are 270MHz and 162MHz with 0.25% down-spreading and triangular waveform frequency modulation of 33kHz. The peak power reduction is 11.1dBm at 270MHz. The circuit has been designed and fabricated using in 0.18$\mu$m CMOS technology. The chip occupies 0.620mm$\times$0.780mm. The measurement results show that the fabricated chip satisfies the DispalyPort standard.

A Design of ${\Delta}{\Sigma}$ Fractional-N Frequency Synthesizer Using Pulse Removed PFD for 802.11 n Standard (802.11n WLAN용 ${\Delta}{\Sigma}$ Fractional-N 주파수 합성기의 피드백 체인 설계)

  • Jeon, Boo-Won;Kim, Jong-Cheol;Roh, Hyung-Hwan;Park, Jun-Seok;Oh, Ha-Ryung;Seong, Young-Rak;Joung, Myoung-Sub
    • Proceedings of the KIEE Conference
    • /
    • 2008.10a
    • /
    • pp.161-162
    • /
    • 2008
  • 본 논문에서는 820.11n 규격에 적합한 Fractional-N 주파수 합성기를 설계하였다. 본 논문에서 설계한 주파수 합성기의 특징은 PFD(Phase Frequency Detector) 뒷단에 잔여 펄스를 제거하는 Pulse Remover를 연결하여 이중 궤환 Charge Pump의 안정도를 향상시켰으며, Charge Pump에서 동시에 발생하는 Up/Down 전류로 인한 Spike성 전류를 없앰으로서 스퓨리어스를 최소화 시켰다. Pulse Removed RFD를 사용함으로서 발생하는 PFD Deadzon문제는 2N+2분주와 2N-2분주기를 3차의 ${\Delta}{\Sigma}$ Modulator가 선택해줌으로 해결하였다. 삼성 0.18u 공정을 이용하여 설계 하였으며 각 블록은 Cadence spectre를 이용하여 검증하였다.

  • PDF