• Title/Summary/Keyword: deep convolution neural network

Search Result 267, Processing Time 0.028 seconds

Improved Handwritten Hangeul Recognition using Deep Learning based on GoogLenet (GoogLenet 기반의 딥 러닝을 이용한 향상된 한글 필기체 인식)

  • Kim, Hyunwoo;Chung, Yoojin
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.7
    • /
    • pp.495-502
    • /
    • 2018
  • The advent of deep learning technology has made rapid progress in handwritten letter recognition in many languages. Handwritten Chinese recognition has improved to 97.2% accuracy while handwritten Japanese recognition approached 99.53% percent accuracy. Hanguel handwritten letters have many similar characters due to the characteristics of Hangeul, so it was difficult to recognize the letters because the number of data was small. In the handwritten Hanguel recognition using Hybrid Learning, it used a low layer model based on lenet and showed 96.34% accuracy in handwritten Hanguel database PE92. In this paper, 98.64% accuracy was obtained by organizing deep CNN (Convolution Neural Network) in handwritten Hangeul recognition. We designed a new network for handwritten Hangeul data based on GoogLenet without using the data augmentation or the multitasking techniques used in Hybrid learning.

Deep Learning-based Super Resolution Method Using Combination of Channel Attention and Spatial Attention (채널 강조와 공간 강조의 결합을 이용한 딥 러닝 기반의 초해상도 방법)

  • Lee, Dong-Woo;Lee, Sang-Hun;Han, Hyun Ho
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.12
    • /
    • pp.15-22
    • /
    • 2020
  • In this paper, we proposed a deep learning based super-resolution method that combines Channel Attention and Spatial Attention feature enhancement methods. It is important to restore high-frequency components, such as texture and features, that have large changes in surrounding pixels during super-resolution processing. We proposed a super-resolution method using feature enhancement that combines Channel Attention and Spatial Attention. The existing CNN (Convolutional Neural Network) based super-resolution method has difficulty in deep network learning and lacks emphasis on high frequency components, resulting in blurry contours and distortion. In order to solve the problem, we used an emphasis block that combines Channel Attention and Spatial Attention to which Skip Connection was applied, and a Residual Block. The emphasized feature map extracted by the method was extended through Sub-pixel Convolution to obtain the super resolution. As a result, about PSNR improved by 5%, SSIM improved by 3% compared with the conventional SRCNN, and by comparison with VDSR, about PSNR improved by 2% and SSIM improved by 1%.

Fingertip Detection through Atrous Convolution and Grad-CAM (Atrous Convolution과 Grad-CAM을 통한 손 끝 탐지)

  • Noh, Dae-Cheol;Kim, Tae-Young
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.5
    • /
    • pp.11-20
    • /
    • 2019
  • With the development of deep learning technology, research is being actively carried out on user-friendly interfaces that are suitable for use in virtual reality or augmented reality applications. To support the interface using the user's hands, this paper proposes a deep learning-based fingertip detection method to enable the tracking of fingertip coordinates to select virtual objects, or to write or draw in the air. After cutting the approximate part of the corresponding fingertip object from the input image with the Grad-CAM, and perform the convolution neural network with Atrous Convolution for the cut image to detect fingertip location. This method is simpler and easier to implement than existing object detection algorithms without requiring a pre-processing for annotating objects. To verify this method we implemented an air writing application and showed that the recognition rate of 81% and the speed of 76 ms were able to write smoothly without delay in the air, making it possible to utilize the application in real time.

Impulsive Noise Mitigation Scheme Based on Deep Learning (딥 러닝 기반의 임펄스 잡음 완화 기법)

  • Sun, Young Ghyu;Hwang, Yu Min;Sim, Issac;Kim, Jin Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.4
    • /
    • pp.138-149
    • /
    • 2018
  • In this paper, we propose a system model which effectively mitigates impulsive noise that degrades the performance of power line communication. Recently, deep learning have shown effective performance improvement in various fields. In order to mitigate effective impulsive noise, we applied a convolution neural network which is one of deep learning algorithm to conventional system. Also, we used a successive interference cancellation scheme to mitigate impulsive noise generated from multi-users. We simulate the proposed model which can be applied to the power line communication in the Section V. The performance of the proposed system model is verified through bit error probability versus SNR graph. In addition, we compare ZF and MMSE successive interference cancellation scheme, successive interference cancellation with optimal ordering, and successive interference cancellation without optimal ordering. Then we confirm which schemes have better performance.

Classification of Midinfrared Spectra of Colon Cancer Tissue Using a Convolutional Neural Network

  • Kim, In Gyoung;Lee, Changho;Kim, Hyeon Sik;Lim, Sung Chul;Ahn, Jae Sung
    • Current Optics and Photonics
    • /
    • v.6 no.1
    • /
    • pp.92-103
    • /
    • 2022
  • The development of midinfrared (mid-IR) quantum cascade lasers (QCLs) has enabled rapid high-contrast measurement of the mid-IR spectra of biological tissues. Several studies have compared the differences between the mid-IR spectra of colon cancer and noncancerous colon tissues. Most mid-IR spectrum classification studies have been proposed as machine-learning-based algorithms, but this results in deviations depending on the initial data and threshold values. We aim to develop a process for classifying colon cancer and noncancerous colon tissues through a deep-learning-based convolutional-neural-network (CNN) model. First, we image the midinfrared spectrum for the CNN model, an image-based deep-learning (DL) algorithm. Then, it is trained with the CNN algorithm and the classification ratio is evaluated using the test data. When the tissue microarray (TMA) and routine pathological slide are tested, the ML-based support-vector-machine (SVM) model produces biased results, whereas we confirm that the CNN model classifies colon cancer and noncancerous colon tissues. These results demonstrate that the CNN model using midinfrared-spectrum images is effective at classifying colon cancer tissue and noncancerous colon tissue, and not only submillimeter-sized TMA but also routine colon cancer tissue samples a few tens of millimeters in size.

Hybrid Tensor Flow DNN and Modified Residual Network Approach for Cyber Security Threats Detection in Internet of Things

  • Alshehri, Abdulrahman Mohammed;Fenais, Mohammed Saeed
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.237-245
    • /
    • 2022
  • The prominence of IoTs (Internet of Things) and exponential advancement of computer networks has resulted in massive essential applications. Recognizing various cyber-attacks or anomalies in networks and establishing effective intrusion recognition systems are becoming increasingly vital to current security. MLTs (Machine Learning Techniques) can be developed for such data-driven intelligent recognition systems. Researchers have employed a TFDNNs (Tensor Flow Deep Neural Networks) and DCNNs (Deep Convolution Neural Networks) to recognize pirated software and malwares efficiently. However, tuning the amount of neurons in multiple layers with activation functions leads to learning error rates, degrading classifier's reliability. HTFDNNs ( Hybrid tensor flow DNNs) and MRNs (Modified Residual Networks) or Resnet CNNs were presented to recognize software piracy and malwares. This study proposes HTFDNNs to identify stolen software starting with plagiarized source codes. This work uses Tokens and weights for filtering noises while focusing on token's for identifying source code thefts. DLTs (Deep learning techniques) are then used to detect plagiarized sources. Data from Google Code Jam is used for finding software piracy. MRNs visualize colour images for identifying harms in networks using IoTs. Malware samples of Maling dataset is used for tests in this work.

Multimode-fiber Speckle Image Reconstruction Based on Multiscale Convolution and a Multidimensional Attention Mechanism

  • Kai Liu;Leihong Zhang;Runchu Xu;Dawei Zhang;Haima Yang;Quan Sun
    • Current Optics and Photonics
    • /
    • v.8 no.5
    • /
    • pp.463-471
    • /
    • 2024
  • Multimode fibers (MMFs) possess high information throughput and small core diameter, making them highly promising for applications such as endoscopy and communication. However, modal dispersion hinders the direct use of MMFs for image transmission. By training neural networks on time-series waveforms collected from MMFs it is possible to reconstruct images, transforming blurred speckle patterns into recognizable images. This paper proposes a fully convolutional neural-network model, MSMDFNet, for image restoration in MMFs. The network employs an encoder-decoder architecture, integrating multiscale convolutional modules in the decoding layers to enhance the receptive field for feature extraction. Additionally, attention mechanisms are incorporated from both spatial and channel dimensions, to improve the network's feature-perception capabilities. The algorithm demonstrates excellent performance on MNIST and Fashion-MNIST datasets collected through MMFs, showing significant improvements in various metrics such as SSIM.

Asphalt Concrete Pavement Surface Crack Detection using Convolutional Neural Network (합성곱 신경망을 이용한 아스팔트 콘크리트 도로포장 표면균열 검출)

  • Choi, Yoon-Soo;Kim, Jong-Ho;Cho, Hyun-Chul;Lee, Chang-Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.6
    • /
    • pp.38-44
    • /
    • 2019
  • A Convolution Neural Network(CNN) model was utilized to detect surface cracks in asphalt concrete pavements. The CNN used for this study consists of five layers with 3×3 convolution filter and 2×2 pooling kernel. Pavement surface crack images collected by automated road surveying equipment was used for the training and testing of the CNN. The performance of the CNN was evaluated using the accuracy, precision, recall, missing rate, and over rate of the surface crack detection. The CNN trained with the largest amount of data shows more than 96.6% of the accuracy, precision, and recall as well as less than 3.4% of the missing rate and the over rate.

Customer Behavior Prediction of Binary Classification Model Using Unstructured Information and Convolution Neural Network: The Case of Online Storefront (비정형 정보와 CNN 기법을 활용한 이진 분류 모델의 고객 행태 예측: 전자상거래 사례를 중심으로)

  • Kim, Seungsoo;Kim, Jongwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.221-241
    • /
    • 2018
  • Deep learning is getting attention recently. The deep learning technique which had been applied in competitions of the International Conference on Image Recognition Technology(ILSVR) and AlphaGo is Convolution Neural Network(CNN). CNN is characterized in that the input image is divided into small sections to recognize the partial features and combine them to recognize as a whole. Deep learning technologies are expected to bring a lot of changes in our lives, but until now, its applications have been limited to image recognition and natural language processing. The use of deep learning techniques for business problems is still an early research stage. If their performance is proved, they can be applied to traditional business problems such as future marketing response prediction, fraud transaction detection, bankruptcy prediction, and so on. So, it is a very meaningful experiment to diagnose the possibility of solving business problems using deep learning technologies based on the case of online shopping companies which have big data, are relatively easy to identify customer behavior and has high utilization values. Especially, in online shopping companies, the competition environment is rapidly changing and becoming more intense. Therefore, analysis of customer behavior for maximizing profit is becoming more and more important for online shopping companies. In this study, we propose 'CNN model of Heterogeneous Information Integration' using CNN as a way to improve the predictive power of customer behavior in online shopping enterprises. In order to propose a model that optimizes the performance, which is a model that learns from the convolution neural network of the multi-layer perceptron structure by combining structured and unstructured information, this model uses 'heterogeneous information integration', 'unstructured information vector conversion', 'multi-layer perceptron design', and evaluate the performance of each architecture, and confirm the proposed model based on the results. In addition, the target variables for predicting customer behavior are defined as six binary classification problems: re-purchaser, churn, frequent shopper, frequent refund shopper, high amount shopper, high discount shopper. In order to verify the usefulness of the proposed model, we conducted experiments using actual data of domestic specific online shopping company. This experiment uses actual transactions, customers, and VOC data of specific online shopping company in Korea. Data extraction criteria are defined for 47,947 customers who registered at least one VOC in January 2011 (1 month). The customer profiles of these customers, as well as a total of 19 months of trading data from September 2010 to March 2012, and VOCs posted for a month are used. The experiment of this study is divided into two stages. In the first step, we evaluate three architectures that affect the performance of the proposed model and select optimal parameters. We evaluate the performance with the proposed model. Experimental results show that the proposed model, which combines both structured and unstructured information, is superior compared to NBC(Naïve Bayes classification), SVM(Support vector machine), and ANN(Artificial neural network). Therefore, it is significant that the use of unstructured information contributes to predict customer behavior, and that CNN can be applied to solve business problems as well as image recognition and natural language processing problems. It can be confirmed through experiments that CNN is more effective in understanding and interpreting the meaning of context in text VOC data. And it is significant that the empirical research based on the actual data of the e-commerce company can extract very meaningful information from the VOC data written in the text format directly by the customer in the prediction of the customer behavior. Finally, through various experiments, it is possible to say that the proposed model provides useful information for the future research related to the parameter selection and its performance.

Road Surface Damage Detection based on Object Recognition using Fast R-CNN (Fast R-CNN을 이용한 객체 인식 기반의 도로 노면 파손 탐지 기법)

  • Shim, Seungbo;Chun, Chanjun;Ryu, Seung-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.2
    • /
    • pp.104-113
    • /
    • 2019
  • The road management institute needs lots of cost to repair road surface damage. These damages are inevitable due to natural factors and aging, but maintenance technologies for efficient repair of the broken road are needed. Various technologies have been developed and applied to cope with such a demand. Recently, maintenance technology for road surface damage repair is being developed using image information collected in the form of a black box installed in a vehicle. There are various methods to extract the damaged region, however, we will discuss the image recognition technology of the deep neural network structure that is actively studied recently. In this paper, we introduce a new neural network which can estimate the road damage and its location in the image by region-based convolution neural network algorithm. In order to develop the algorithm, about 600 images were collected through actual driving. Then, learning was carried out and compared with the existing model, we developed a neural network with 10.67% accuracy.