Acknowledgement
This work was supported by the Korean Medical Device Development Fund grant funded by the Korean government (the Ministry of Science and ICT, the Ministry of Trade, Industry and Energy, the Ministry of Health & Welfare, and the Ministry of Food and Drug Safety) (Project Number: 1711137874, KMDF_PR_20200901_0008), and was also partially supported by a grant from the "HPC Support" Project, supported by the "Ministry of Science and ICT" and NIPA.
References
- H. H. Mantsch and D. Chapman, Infrared spectroscopy of biomolecules (Wiley-Liss, USA. 1996).
- M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sule-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, "Using Fourier transform IR spectroscopy to analyze biological materials," Nat. Protoc. 9, 1771-1791 (2014). https://doi.org/10.1038/nprot.2014.110
- K. B. Bec, J. Grabska, and C. W. Huck, "Biomolecular and bioanalytical applications of infrared spectroscopy-A review," Anal. Chim. Acta 1133, 150-177 (2020). https://doi.org/10.1016/j.aca.2020.04.015
- K. Z. Liu, M. Xu, and D. A. Scott, "Biomolecular characterisation of leucocytes by infrared spectroscopy," Br. J. Haematol. 136, 713-722 (2007). https://doi.org/10.1111/j.1365-2141.2006.06474.x
- M. Diem, M. Romeo, S. Boydston-White, M. Miljkovic, and C. Matthaus, "A decade of vibrational micro-spectroscopy of human cells and tissue (1994-2004)," Analyst 129, 880-885 (2004). https://doi.org/10.1039/b408952a
- M. Hermes, R. B. Morrish, L. Huot, L. Meng, S. Junaid, J. Tomko, G. R. Lloyd, W. T. Masselink, P. Tidemand-Lichtenberg, C. Pedersen, F. Palombo, and N. Stone, "Mid-IR hyperspectral imaging for label-free histopathology and cytology," J. Opt. 20, 023002 (2018). https://doi.org/10.1088/2040-8986/20/2/023002
- B. Bird, M. Miljkovic, S. Remiszewski, A. Akalin, M. Kon, and M. Diem, "Infrared spectral histopathology (SHP): a novel diagnostic tool for the accurate classification of lung cancer," Lab. Invest. 92, 1358-1373 (2012). https://doi.org/10.1038/labinvest.2012.101
- B. Bird and M. J. Baker, "Quantum cascade lasers in biomedical infrared imaging," Trends Biotechnol. 33, 557-558 (2015). https://doi.org/10.1016/j.tibtech.2015.07.003
- P. Bassan, A. Sachdeva, J. H. Shanks, M. D. Brown, N. W. Clarke, and P. Gardner, "Whole organ cross-section chemical imaging using label-free mega-mosaic FTIR microscopy," Analyst 138, 7066-7069 (2013). https://doi.org/10.1039/c3an01674a
- P. Bassan, M. J. Weida, J. Rowlette, and P. Gardner, "Large scale infrared imaging of tissue micro arrays (TMAs) using a tunable quantum cascade laser (QCL) based microscope," Analyst 139, 3856-3859 (2014). https://doi.org/10.1039/c4an00638k
- C. Kuepper, A. Kallenbach-Thieltges, H. Juette, A. Tannapfel, F. Grosserueschkamp, and K. Gerwert, "Quantum cascade laser-based infrared microscopy for label-free and automated cancer classification in tissue sections," Sci. Rep. 8, 7717 (2018). https://doi.org/10.1038/s41598-018-26098-w
- K. Yeh, S. Kenkel, J.-N. Liu, and R. Bhargava, "Fast infrared chemical imaging with a quantum cascade laser," Anal. Chem. 87, 485-493 (2015). https://doi.org/10.1021/ac5027513
- K. Haase, N. Kroger-Lui, A. Pucci, A. Schonhals, and W. Petrich, "Real-time mid-infrared imaging of living microorganisms," J. Biophotonics 9, 61-66 (2016). https://doi.org/10.1002/jbio.201500264
- A. Schwaighofer, M. Brandstetter, and B. Lendl, "Quantum cascade lasers (QCLs) in biomedical spectroscopy," Chem. Soc. Rev. 46, 5903-5924 (2017). https://doi.org/10.1039/c7cs00403f
- D. C. Fernandez, R. Bhargava, S. M. Hewitt, I. and W. Levin, "Infrared spectroscopic imaging for histopathologic recognition," Nat. Biotechnol. 23, 469-474 (2005). https://doi.org/10.1038/nbt1080
- A. Kallenbach-Thieltges, F. Grosseruschkamp, A. Mosig, M. Diem, A. Tannapfel, and K. Gerwert, "Immunohistochemistry, histopathology and infrared spectral histopathology of colon cancer tissue sections," J. Biophotonics 6, 88-100 (2013). https://doi.org/10.1002/jbio.201200132
- F. Chu and L. Wang, "Applications of support vector machines to cancer classification with microarray data," Int. J. Neural Syst. 15, 475-484 (2005). https://doi.org/10.1142/S0129065705000396
- C. Leslie, E. Eskin, and W. S. Noble, "The spectrum kernel: a string kernel for SVM protein classification," in Proc. Pacific Symposium on Biocomputing (Kauai, Hawaii, USA, Jan. 2002), pp. 564-575.
- K. Ali, Y. Lu, U. Das, R. K. Sharma, S. Wiebe, K. Meguro, V. Sadanand, D. R. Fourney, A. Vitali, M. Kelly, T. May, J. Gomez, and E. Pellerin, "Biomolecular diagnosis of human glioblastoma multiforme using Synchrotron mid-infrared spectromicroscopy," Int. J. Molec. Med. 26, 11-16 (2010).
- G. L. Owens, K. Gajjar, J. Trevisan, S. W. Fogarty, S. E. Taylor, B. Da Gama-Rose, P. L. Martin-Hirsch, and F. L. Martin, "Vibrational biospectroscopy coupled with multivariate analysis extracts potentially diagnostic features in blood plasma/serum of ovarian cancer patients," J. Biophotonics 7, 200-209 (2014). https://doi.org/10.1002/jbio.201300157
- L.-W. Shang, D.-Y. Ma, J.-J. Fu, Y.-F. Lu, Y. Zhao, X.-Y. Xu, and J.-H. Yin, "Fluorescence imaging and Raman spectroscopy applied for the accurate diagnosis of breast cancer with deep learning algorithms," Biomed. Opt. Express 11, 3673-3683 (2020). https://doi.org/10.1364/boe.394772
- O. Collier, V. Stoven, and J.-P. Vert, "LOTUS: A single-and multitask machine learning algorithm for the prediction of cancer driver genes," PLoS Comput. Biol. 15, e1007381 (2019). https://doi.org/10.1371/journal.pcbi.1007381
- Y. Liu, K. Gadepalli, M. Norouzi, G. E. Dahl, T. Kohlberger, A. Boyko, S. Venugopalan, A. Timofeev, P. Q. Nelson, G. S. Corrado, J. D. Hipp, L. Peng, and M. C. Stumpe, "Detecting cancer metastases on gigapixel pathology images," arXiv 1703.02442 (2017).
- S.-C. B. Lo, S.-L. A. Lou, J.-S. Lin, M. T. Freedman, M. V. Chien, and S. K. Mun, "Artificial convolution neural network techniques and applications for lung nodule detection," IEEE Trans. Med. Imaging 14, 711-718 (1995). https://doi.org/10.1109/42.476112
- B. B. Traore, B. Kamsu-Foguem, and F. Tangara, "Deep convolution neural network for image recognition," Ecol. Inform. 48, 257-268 (2018). https://doi.org/10.1016/j.ecoinf.2018.10.002
- A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," in Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012, P. Bartlett, Eds. (Neural Information Processing Systems Foundation, USA. 2012), vol. 25, pp. 1097-1105.
- S.-C. B. Lo, H.-P. Chan, J.-S. Lin, H. Li, M. T. Freedman, and S. K. Mun, "Artificial convolution neural network for medical image pattern recognition," Neural Netw. 8, 1201-1214 (1995). https://doi.org/10.1016/0893-6080(95)00061-5
- F. Gao, W. Wang, M. Tan, L. Zhu, Y. Zhang, E. Fessler, L. Vermeulen, and X. Wang, "DeepCC: a novel deep learning-based framework for cancer molecular subtype classification," Oncogenesis 8, 44 (2019). https://doi.org/10.1038/s41389-019-0157-8
- H. Shin, S. Oh, S. Hong, M. Kang, D. Kang, Y.-G. Ji, B. H. Choi, K.-W. Kang, H. Jeong, Y. Park, S. Hong, H. K. Kim, and Y. Choi, "Early-stage lung cancer diagnosis by deep learningbased spectroscopic analysis of circulating exosomes," ACS nano 14, 5435-5444 (2020). https://doi.org/10.1021/acsnano.9b09119
- B. Hu, J. Du, Z. Zhang, and Q. Wang, "Tumor tissue classification based on micro-hyperspectral technology and deep learning," Biomed. Opt. Express 10, 6370-6389 (2019). https://doi.org/10.1364/boe.10.006370
- L. Yuan and J. Cao, "Patients' EEG data analysis via spectrogram image with a convolution neural network," in Intelligent Decision Technologies 2017 (Springer, Switzerland, 2018), pp. 13-21.
- J. Huang, B. Chen, B. Yao, and W. He, "ECG arrhythmia classification using STFT-based spectrogram and convolutional neural network," IEEE Access 7, 92871-92880 (2019). https://doi.org/10.1109/access.2019.2928017
- P. Bassan, A. Kohler, H. Martens, J. Lee, H. J. Byrne, P. Dumas, E. Gazi, M. Brown, N. Clarke, and P. Gardner, "Resonant Mie scattering (RMieS) correction of infrared spectra from highly scattering biological samples," Analyst 135, 268-277 (2010). https://doi.org/10.1039/b921056c
- B. Bird, M. Miljkovic, and M. Diem, "Two step resonant Mie scattering correction of infrared micro-spectral data: human lymph node tissue," J. Biophotonics 3, 597-608 (2010). https://doi.org/10.1002/jbio.201000024
- S. Wold, K. Esbensen, and P. Geladi, "Principal component analysis," Chemom. Intell. Lab. Syst. 2, 37-52 (1987). https://doi.org/10.1016/0169-7439(87)80084-9
- M. E. Tipping and C. M. Bishop, "Probabilistic principal component analysis," J. R. Stat. Soc. Series B Stat. Methodol. 61, 611-622 (1999). https://doi.org/10.1111/1467-9868.00196
- M. Ringner, "What is principal component analysis?," Nat. Biotechnol. 26, 303-304 (2008). https://doi.org/10.1038/nbt0308-303
- M. Richardson, (2009). Principal component analysis [Online], Available: http://www.dsc.ufcg.edu.br/~hmg/disciplinas/posgraduacao/rn-copin-2014.3/material/SignalProcPCA.pdf
- H. Abdi and L. J. Williams, "Principal component analysis," WIREs Comput. Stat. 2, 433-459 (2010). https://doi.org/10.1002/wics.101
- R. Bro and A. K. Smilde, "Principal component analysis," Anal. Methods 6, 2812-2831 (2014). https://doi.org/10.1039/c3ay41907j
- J. Shlens, "A tutorial on principal component analysis," arXiv:1404.1100 (2014).
- L. Breiman, "Random forests," Mach. Learn. 45, 5-32 (2001). https://doi.org/10.1023/A:1010933404324
- A. Liaw and M. Wiener, "Classification and regression by random Forest," R news 2, 18-22 (2002).
- D. F. Swinehart, "The beer-lambert law," J. Chem. Educ. 39, 333-335 (1962). https://doi.org/10.1021/ed039p333
- J. A. Suykens and J. Vandewalle, "Least squares support vector machine classifiers," Neural Process. Lett. 9, 293-300 (1999). https://doi.org/10.1023/A:1018628609742
- D. Meyer, F. Leisch, and K. Hornik, "The support vector machine under test," Neurocomputing 55, 169-186 (2003). https://doi.org/10.1016/S0925-2312(03)00431-4
- W. S. Noble, "What is a support vector machine?," Nat. Biotechnol. 24, 1565-1567 (2006). https://doi.org/10.1038/nbt1206-1565
- A. Widodo and B.-S. Yang, "Support vector machine in machine condition monitoring and fault diagnosis," Mech. Syst. Signal Process. 21, 2560-2574 (2007). https://doi.org/10.1016/j.ymssp.2006.12.007