DOI QR코드

DOI QR Code

Classification of Midinfrared Spectra of Colon Cancer Tissue Using a Convolutional Neural Network

  • Kim, In Gyoung (Medical & Bio Photonics Research Center, Korea Photonics Technology Institute) ;
  • Lee, Changho (School of Dentistry, Chonnam National University) ;
  • Kim, Hyeon Sik (Medical & Bio Photonics Research Center, Korea Photonics Technology Institute) ;
  • Lim, Sung Chul (Department of Pathology, Chosun University Hospital) ;
  • Ahn, Jae Sung (Medical & Bio Photonics Research Center, Korea Photonics Technology Institute)
  • Received : 2021.09.16
  • Accepted : 2021.11.17
  • Published : 2022.02.25

Abstract

The development of midinfrared (mid-IR) quantum cascade lasers (QCLs) has enabled rapid high-contrast measurement of the mid-IR spectra of biological tissues. Several studies have compared the differences between the mid-IR spectra of colon cancer and noncancerous colon tissues. Most mid-IR spectrum classification studies have been proposed as machine-learning-based algorithms, but this results in deviations depending on the initial data and threshold values. We aim to develop a process for classifying colon cancer and noncancerous colon tissues through a deep-learning-based convolutional-neural-network (CNN) model. First, we image the midinfrared spectrum for the CNN model, an image-based deep-learning (DL) algorithm. Then, it is trained with the CNN algorithm and the classification ratio is evaluated using the test data. When the tissue microarray (TMA) and routine pathological slide are tested, the ML-based support-vector-machine (SVM) model produces biased results, whereas we confirm that the CNN model classifies colon cancer and noncancerous colon tissues. These results demonstrate that the CNN model using midinfrared-spectrum images is effective at classifying colon cancer tissue and noncancerous colon tissue, and not only submillimeter-sized TMA but also routine colon cancer tissue samples a few tens of millimeters in size.

Keywords

Acknowledgement

This work was supported by the Korean Medical Device Development Fund grant funded by the Korean government (the Ministry of Science and ICT, the Ministry of Trade, Industry and Energy, the Ministry of Health & Welfare, and the Ministry of Food and Drug Safety) (Project Number: 1711137874, KMDF_PR_20200901_0008), and was also partially supported by a grant from the "HPC Support" Project, supported by the "Ministry of Science and ICT" and NIPA.

References

  1. H. H. Mantsch and D. Chapman, Infrared spectroscopy of biomolecules (Wiley-Liss, USA. 1996).
  2. M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sule-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, "Using Fourier transform IR spectroscopy to analyze biological materials," Nat. Protoc. 9, 1771-1791 (2014). https://doi.org/10.1038/nprot.2014.110
  3. K. B. Bec, J. Grabska, and C. W. Huck, "Biomolecular and bioanalytical applications of infrared spectroscopy-A review," Anal. Chim. Acta 1133, 150-177 (2020). https://doi.org/10.1016/j.aca.2020.04.015
  4. K. Z. Liu, M. Xu, and D. A. Scott, "Biomolecular characterisation of leucocytes by infrared spectroscopy," Br. J. Haematol. 136, 713-722 (2007). https://doi.org/10.1111/j.1365-2141.2006.06474.x
  5. M. Diem, M. Romeo, S. Boydston-White, M. Miljkovic, and C. Matthaus, "A decade of vibrational micro-spectroscopy of human cells and tissue (1994-2004)," Analyst 129, 880-885 (2004). https://doi.org/10.1039/b408952a
  6. M. Hermes, R. B. Morrish, L. Huot, L. Meng, S. Junaid, J. Tomko, G. R. Lloyd, W. T. Masselink, P. Tidemand-Lichtenberg, C. Pedersen, F. Palombo, and N. Stone, "Mid-IR hyperspectral imaging for label-free histopathology and cytology," J. Opt. 20, 023002 (2018). https://doi.org/10.1088/2040-8986/20/2/023002
  7. B. Bird, M. Miljkovic, S. Remiszewski, A. Akalin, M. Kon, and M. Diem, "Infrared spectral histopathology (SHP): a novel diagnostic tool for the accurate classification of lung cancer," Lab. Invest. 92, 1358-1373 (2012). https://doi.org/10.1038/labinvest.2012.101
  8. B. Bird and M. J. Baker, "Quantum cascade lasers in biomedical infrared imaging," Trends Biotechnol. 33, 557-558 (2015). https://doi.org/10.1016/j.tibtech.2015.07.003
  9. P. Bassan, A. Sachdeva, J. H. Shanks, M. D. Brown, N. W. Clarke, and P. Gardner, "Whole organ cross-section chemical imaging using label-free mega-mosaic FTIR microscopy," Analyst 138, 7066-7069 (2013). https://doi.org/10.1039/c3an01674a
  10. P. Bassan, M. J. Weida, J. Rowlette, and P. Gardner, "Large scale infrared imaging of tissue micro arrays (TMAs) using a tunable quantum cascade laser (QCL) based microscope," Analyst 139, 3856-3859 (2014). https://doi.org/10.1039/c4an00638k
  11. C. Kuepper, A. Kallenbach-Thieltges, H. Juette, A. Tannapfel, F. Grosserueschkamp, and K. Gerwert, "Quantum cascade laser-based infrared microscopy for label-free and automated cancer classification in tissue sections," Sci. Rep. 8, 7717 (2018). https://doi.org/10.1038/s41598-018-26098-w
  12. K. Yeh, S. Kenkel, J.-N. Liu, and R. Bhargava, "Fast infrared chemical imaging with a quantum cascade laser," Anal. Chem. 87, 485-493 (2015). https://doi.org/10.1021/ac5027513
  13. K. Haase, N. Kroger-Lui, A. Pucci, A. Schonhals, and W. Petrich, "Real-time mid-infrared imaging of living microorganisms," J. Biophotonics 9, 61-66 (2016). https://doi.org/10.1002/jbio.201500264
  14. A. Schwaighofer, M. Brandstetter, and B. Lendl, "Quantum cascade lasers (QCLs) in biomedical spectroscopy," Chem. Soc. Rev. 46, 5903-5924 (2017). https://doi.org/10.1039/c7cs00403f
  15. D. C. Fernandez, R. Bhargava, S. M. Hewitt, I. and W. Levin, "Infrared spectroscopic imaging for histopathologic recognition," Nat. Biotechnol. 23, 469-474 (2005). https://doi.org/10.1038/nbt1080
  16. A. Kallenbach-Thieltges, F. Grosseruschkamp, A. Mosig, M. Diem, A. Tannapfel, and K. Gerwert, "Immunohistochemistry, histopathology and infrared spectral histopathology of colon cancer tissue sections," J. Biophotonics 6, 88-100 (2013). https://doi.org/10.1002/jbio.201200132
  17. F. Chu and L. Wang, "Applications of support vector machines to cancer classification with microarray data," Int. J. Neural Syst. 15, 475-484 (2005). https://doi.org/10.1142/S0129065705000396
  18. C. Leslie, E. Eskin, and W. S. Noble, "The spectrum kernel: a string kernel for SVM protein classification," in Proc. Pacific Symposium on Biocomputing (Kauai, Hawaii, USA, Jan. 2002), pp. 564-575.
  19. K. Ali, Y. Lu, U. Das, R. K. Sharma, S. Wiebe, K. Meguro, V. Sadanand, D. R. Fourney, A. Vitali, M. Kelly, T. May, J. Gomez, and E. Pellerin, "Biomolecular diagnosis of human glioblastoma multiforme using Synchrotron mid-infrared spectromicroscopy," Int. J. Molec. Med. 26, 11-16 (2010).
  20. G. L. Owens, K. Gajjar, J. Trevisan, S. W. Fogarty, S. E. Taylor, B. Da Gama-Rose, P. L. Martin-Hirsch, and F. L. Martin, "Vibrational biospectroscopy coupled with multivariate analysis extracts potentially diagnostic features in blood plasma/serum of ovarian cancer patients," J. Biophotonics 7, 200-209 (2014). https://doi.org/10.1002/jbio.201300157
  21. L.-W. Shang, D.-Y. Ma, J.-J. Fu, Y.-F. Lu, Y. Zhao, X.-Y. Xu, and J.-H. Yin, "Fluorescence imaging and Raman spectroscopy applied for the accurate diagnosis of breast cancer with deep learning algorithms," Biomed. Opt. Express 11, 3673-3683 (2020). https://doi.org/10.1364/boe.394772
  22. O. Collier, V. Stoven, and J.-P. Vert, "LOTUS: A single-and multitask machine learning algorithm for the prediction of cancer driver genes," PLoS Comput. Biol. 15, e1007381 (2019). https://doi.org/10.1371/journal.pcbi.1007381
  23. Y. Liu, K. Gadepalli, M. Norouzi, G. E. Dahl, T. Kohlberger, A. Boyko, S. Venugopalan, A. Timofeev, P. Q. Nelson, G. S. Corrado, J. D. Hipp, L. Peng, and M. C. Stumpe, "Detecting cancer metastases on gigapixel pathology images," arXiv 1703.02442 (2017).
  24. S.-C. B. Lo, S.-L. A. Lou, J.-S. Lin, M. T. Freedman, M. V. Chien, and S. K. Mun, "Artificial convolution neural network techniques and applications for lung nodule detection," IEEE Trans. Med. Imaging 14, 711-718 (1995). https://doi.org/10.1109/42.476112
  25. B. B. Traore, B. Kamsu-Foguem, and F. Tangara, "Deep convolution neural network for image recognition," Ecol. Inform. 48, 257-268 (2018). https://doi.org/10.1016/j.ecoinf.2018.10.002
  26. A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," in Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012, P. Bartlett, Eds. (Neural Information Processing Systems Foundation, USA. 2012), vol. 25, pp. 1097-1105.
  27. S.-C. B. Lo, H.-P. Chan, J.-S. Lin, H. Li, M. T. Freedman, and S. K. Mun, "Artificial convolution neural network for medical image pattern recognition," Neural Netw. 8, 1201-1214 (1995). https://doi.org/10.1016/0893-6080(95)00061-5
  28. F. Gao, W. Wang, M. Tan, L. Zhu, Y. Zhang, E. Fessler, L. Vermeulen, and X. Wang, "DeepCC: a novel deep learning-based framework for cancer molecular subtype classification," Oncogenesis 8, 44 (2019). https://doi.org/10.1038/s41389-019-0157-8
  29. H. Shin, S. Oh, S. Hong, M. Kang, D. Kang, Y.-G. Ji, B. H. Choi, K.-W. Kang, H. Jeong, Y. Park, S. Hong, H. K. Kim, and Y. Choi, "Early-stage lung cancer diagnosis by deep learningbased spectroscopic analysis of circulating exosomes," ACS nano 14, 5435-5444 (2020). https://doi.org/10.1021/acsnano.9b09119
  30. B. Hu, J. Du, Z. Zhang, and Q. Wang, "Tumor tissue classification based on micro-hyperspectral technology and deep learning," Biomed. Opt. Express 10, 6370-6389 (2019). https://doi.org/10.1364/boe.10.006370
  31. L. Yuan and J. Cao, "Patients' EEG data analysis via spectrogram image with a convolution neural network," in Intelligent Decision Technologies 2017 (Springer, Switzerland, 2018), pp. 13-21.
  32. J. Huang, B. Chen, B. Yao, and W. He, "ECG arrhythmia classification using STFT-based spectrogram and convolutional neural network," IEEE Access 7, 92871-92880 (2019). https://doi.org/10.1109/access.2019.2928017
  33. P. Bassan, A. Kohler, H. Martens, J. Lee, H. J. Byrne, P. Dumas, E. Gazi, M. Brown, N. Clarke, and P. Gardner, "Resonant Mie scattering (RMieS) correction of infrared spectra from highly scattering biological samples," Analyst 135, 268-277 (2010). https://doi.org/10.1039/b921056c
  34. B. Bird, M. Miljkovic, and M. Diem, "Two step resonant Mie scattering correction of infrared micro-spectral data: human lymph node tissue," J. Biophotonics 3, 597-608 (2010). https://doi.org/10.1002/jbio.201000024
  35. S. Wold, K. Esbensen, and P. Geladi, "Principal component analysis," Chemom. Intell. Lab. Syst. 2, 37-52 (1987). https://doi.org/10.1016/0169-7439(87)80084-9
  36. M. E. Tipping and C. M. Bishop, "Probabilistic principal component analysis," J. R. Stat. Soc. Series B Stat. Methodol. 61, 611-622 (1999). https://doi.org/10.1111/1467-9868.00196
  37. M. Ringner, "What is principal component analysis?," Nat. Biotechnol. 26, 303-304 (2008). https://doi.org/10.1038/nbt0308-303
  38. M. Richardson, (2009). Principal component analysis [Online], Available: http://www.dsc.ufcg.edu.br/~hmg/disciplinas/posgraduacao/rn-copin-2014.3/material/SignalProcPCA.pdf
  39. H. Abdi and L. J. Williams, "Principal component analysis," WIREs Comput. Stat. 2, 433-459 (2010). https://doi.org/10.1002/wics.101
  40. R. Bro and A. K. Smilde, "Principal component analysis," Anal. Methods 6, 2812-2831 (2014). https://doi.org/10.1039/c3ay41907j
  41. J. Shlens, "A tutorial on principal component analysis," arXiv:1404.1100 (2014).
  42. L. Breiman, "Random forests," Mach. Learn. 45, 5-32 (2001). https://doi.org/10.1023/A:1010933404324
  43. A. Liaw and M. Wiener, "Classification and regression by random Forest," R news 2, 18-22 (2002).
  44. D. F. Swinehart, "The beer-lambert law," J. Chem. Educ. 39, 333-335 (1962). https://doi.org/10.1021/ed039p333
  45. J. A. Suykens and J. Vandewalle, "Least squares support vector machine classifiers," Neural Process. Lett. 9, 293-300 (1999). https://doi.org/10.1023/A:1018628609742
  46. D. Meyer, F. Leisch, and K. Hornik, "The support vector machine under test," Neurocomputing 55, 169-186 (2003). https://doi.org/10.1016/S0925-2312(03)00431-4
  47. W. S. Noble, "What is a support vector machine?," Nat. Biotechnol. 24, 1565-1567 (2006). https://doi.org/10.1038/nbt1206-1565
  48. A. Widodo and B.-S. Yang, "Support vector machine in machine condition monitoring and fault diagnosis," Mech. Syst. Signal Process. 21, 2560-2574 (2007). https://doi.org/10.1016/j.ymssp.2006.12.007