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Summary 
The prominence of IoTs (Internet of Things) and exponential 
advancement of computer networks has resulted in massive 
essential applications. Recognizing various cyber-attacks or 
anomalies in networks and establishing effective intrusion 
recognition systems are becoming increasingly vital to current 
security. MLTs (Machine Learning Techniques) can be developed 
for  such data-driven intelligent recognition systems. Researchers 
have employed a TFDNNs (Tensor Flow Deep Neural Networks) 
and DCNNs (Deep Convolution Neural Networks)  to recognize 
pirated software and malwares efficiently. However, tuning the 
amount of neurons in multiple layers with activation functions 
leads to learning error rates,  degrading classifier's reliability. 
HTFDNNs ( Hybrid tensor flow DNNs) and MRNs (Modified 
Residual Networks) or Resnet CNNs were presented to recognize 
software piracy and malwares. This study proposes HTFDNNs to 
identify stolen software starting with plagiarized source codes. 
This work uses Tokens and weights for filtering noises while 
focusing on token’s for identifying source code thefts. DLTs 
(Deep learning techniques) are then used to detect plagiarized 
sources. Data from Google Code Jam is used for finding software 
piracy. MRNs visualize colour images for identifying harms in 
networks using IoTs. Malware samples of Maling dataset is used 
for tests in this work.  
Keywords: 
IoT, malware detection, software piracy, cyber security, data 
mining, Tensor flow DNN. 

1. Introduction 

Malware's exponential growth has recently posed a 
serious cyber security threat. The number of new malware 
variants has surpassed a billion in the last three years, 
according to the Symantec internet security threat report [1]. 
Hackers are increasingly using techniques like packing and 
encryption to create new malware variants. Thus, rapid and 
accurate malware variant identification can help cyber 
security professionals understand their harmfulness and 
other attributes, which is valuable research [2]. The impacts 
of cyber risks on: Public/private institutional information 
systems; goodwill and stakeholder confidences are being 
increasingly felt. Cyber attacks break into corporate IT 
infrastructures for disrupt businesses or amusements or 
challenges. Websites or servers go down in cyber 
challenges between professionals. [3].  To reclaim service, 

access, or websites, current cyber threats and attackers 
require payment from the victimised enterprise. 

Insurance policies were designed for protecting 
businesses against financial consequences due to threats on 
the Internet. Organizations specializing in risk assumptions 
and pooling foresaw financial opportunities in this area [4]. 
Many insurances exist now for cyber security breaches. 
When these organizations were new to this domain, it was 
difficult for them to collect data about electronic losses, but 
they have educated themselves on pricing policies and 
predicting potential losses. IoTs use electronic chips, 
sensors, and other moving hardware gadgets to get 
connected physically  called "Things" to the internet. 
Devices in IoTs are identified by RFIDs (radio frequency 
identifiers) which can be controlled and monitored from 
distances [5]. IoTs connect intelligent physical objects, 
services, cloud computers, and applications irrespective of 
locations. IBM had predicted 50 billion internet connected 
devices [6]. Technology enables IOTs can be used to build 
smart cities, academics, e-commerce/banking, healthcare, 
industries, entertainments, and protections of human being 
to name a few of their applications. Networks connecting 
IoT devices can be attacked by Malwares while pirated 
software target industrial cloud IoTs thus compromising 
security. 

Software piracy has emerged as a major issue of the 
software industry. It can be defined as unauthorized usage 
of complete software or portions without any legal license 
and agreement. Most individual uses of software are 
unaware that pirating software is a severe felony committed. 
Preventing software piracies are critical for the industry's 
growth as developments in real-world applications consume 
significant amounts of efforts in terms of development ideas 
and executions. Many approaches have been employed in 
this fight against software piracy. Software piracy is the 
illegal reuse of other people's source codes to create 
software that looks like the original. The cracker may 
reverse engineer the original software's logic and design it 
in another type of source code [7].  It is rapidly increasing 
and costs the software industry a lot of money [8]. 
According to the Business Software Alliance (BSA) 2016 
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report, public software piracy costs businesses up to $52.2 
billion annually. Many studies have shown that anywhere 
from 5% to 20% of all software contains plagiarised source 
codes. Intelligent software plagiarism detection is required 
to detect pirated software source code. Researchers have 
proposed multiple approaches for identifying software 
birthmarks which are based on design features and 
appropriate estimations of procedures copied. Though 
studies have thoroughly examined programmes in several 
perspectives of software piracy and theft detections, lack of 
objective metrics for software comparisons in terms of 
infringement detections are very less. An analysis of source 
code structure includes syntax trees, graph behaviour, and 
subroutine function call graphs [9]. This makes it difficult 
to detect if a cracker reuses the original software's logic in 
a different programming language. The industrial IoT cloud 
services can safeguard smart devices by detecting software 
plagiarism and malware[10]. Currently, malware 
recognition methods fall into two categories: static feature-
based and dynamic feature-based. Static malware detection 
analyses the malware's raw bytes or disassembles it to 
analyse its opcodes, file structure, and other file attributes. 

Attacks on networked IoTs are becoming easier as 
these networks grow where Malwares use internet to target 
nodes, computers, and smart phones. Many techniques have 
been proposed for detecting Windows based malwares 
where these methods can be dynamic or static.  Dynamic 
approaches use code executions in virtual environments to 
learn malware patterns [11]. Suspicious behaviours can be 
identified by examining function calls or exploring 
parameters or data flows or tracing instructions or visual 
analyses of codes. Learning approaches use activation 
function’s error rates to adjust neuron counts in layers 
where high errors result in degraded classifier performances. 
This research work proposes HTFDNNs and MRNs or 
Resnet CNNs for detecting software piracy and malwares. 

The remaining of the research work is: Section 2 
review the recent techniques for protecting the malicious 
attacks using advanced MLTs. section 3 briefs the proposed 
methodology. section 4 briefs the results and its explanation. 
section 5 deals with the conclusion and future work. 

2. Literature Review 

In this part, some recent cyber security techniques that 
work better when combined than when run separately. 
Musman et al. [12] implemented Cyber Security Game for 
determining best budgetary security measures. Their 
implementation considered cyber event’s risk level and 
chances of threats. When more systems are interconnected 
all possible attack paths were defended in the Game, but 

attackers need only one path to succeed. The 
implementation minimized maximum cyber risk using 
MiniMax game theory. The study demonstrated their Cyber 
Security Game's methods using a point-of-sale system. 
Fielder et al. [13] introduced a new control game in which 
the security manager must pick between multiple levels of 
implementation of cyber security control, and a commodity 
attacker must choose between multiple targets to attack. We 
created a decision-making tool and a case study based on 
existing regulatory standards to compare these techniques.  
Feng et al. [14] developed innovative cyber risk 
managements for blockchain-based services. The scheme 
adopted cost-effective cyber insurances for reducing cyber 
risks on blockchain networks and assuming blockchain 
services included infrastructure providers, blockchain 
providers, insurers, and users. To keep blockchains on, 
suppliers bought computing resources with consensus from 
infra-framework suppliers like clouds before releasing 
blockchain services to customers. For modelling and 
evaluating distributed computing investments, Dhamal et al. 
[15] used stochastic game frameworks using dynamic 
players and where players were rewarded for overcoming 
problems or contributing computational resources but paid 
the cost of computational power and time consumed for 
usage like blockchain mining. On the other hand, players 
with cost parameters below a specific threshold invest 
maximal power in Markov perfect equilibrium. Players 
don't need to know the system state. As in volunteer 
computing, a payment for contributing to a common central 
entity's processing capacity is then considered. We use 
simulations to investigate the impact of players' entrance 
and departure rates on utilities in both scenarios. Kim et al. 
[16] developed a new Bitcoin mining protocol along with 
payment incentives applied on  peer-to-peer groups in 
distributed computation network systems. Their 
investigations maximized Bitcoin users' benefits while 
using their cooperative game paradigm.  

The presented technique is compared to other current 
schemes using system-level simulations. According to the 
simulation results, this solution exceeds existing Bitcoin 
schemes in terms of fairness and efficiency. Shomer et al. 
[17] studied the success rate of block-hiding mining in 
Bitcoin-like networks. Find two block-hiding techniques 
that outperform the typical mining strategy in this parameter 
space. This study recommends relative hashing power to 
measure a miner's influence on the network. But only when 
this measure of impact crosses a particular threshold. 
Grover et al. [18] presented CNNs and ANNsto recognize 
malware risks in data files across IoT data networks. While 
the CNN-based paradigm recognizes malware via pictures, 
the ANN-based paradigm distinguishes between malware 
and ordinary via incoming data traffic. Naeem et al. [19] 
developed MTHS (Malware Assault Hunting System) that 
transformed malware binaries into colour images for 
efficient malware recognitions. The study created baseline 
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accuracy comparisons of MTHS with traditional malware 
detection methods. Their scheme was tested on Windows 
and Android software datasets where their MTHS 
performed better in terms of reaction times and detection 
accuracies, outperforming MLTs and DLTs.  Aslan et al. 
[20] introduced a new hybrid architecture that integrated 
pre-trained networks optimally. The study collected data 
where their designed DNNs were trained on evaluated on 
Malimg, BIG 2015, and Malevis datasets. The study’s 
findings showed that their suggested procedure accurately 
classified malwares while outperforming other methods and 
scored 97.78% accuracy on the Malimg dataset exceeding 
most malware detection techniques based on MLTs. Bozkir 
et al. [21] examined modern convolutional neural networks 
(Resnet, Inception, DenseNet, VGG, AlexNet) with 
paradigm generation and inference time. A unique malware 
data set with 8750 training and 3644 test examples across 
25 classes was also recommended and utilized. Using 
DenseNet networks, the maximum accuracy was 97.48 % 
using 3-channel (RGB) images. Ullah et al. [22] used a 
combined scheme where DLTs recognized pirated software 
and malwares- in networked Iots while TFDNNs identified 
pirated applications. Then deep learning recognizes source 
code plagiarism.. The DCNN also recognizes harmful 
infections in IoT networks using color images. The testing 
findings show that the presented technique to find IoT 
cybersecurity threats performs better than existing 
procedures. The existing system offers some benefits and 
drawbacks based on the preceding study. Unknown 
malware detection is a significant challenge.  

3. Proposed Methodology 

This paper suggests a paradigm of safety for industrial 
IoT’s cyber security threats as depicted in Figure 1. The 
malware binaries and pirated software files are processed 
using 4 cloud storage databases. The first database contains 
raw network traffic data, while the second database contains 
a list of previous virus data, and the third database contains 
new virus signatures. Cracker stores stole software in IoT 
devices in database 4. It acts as a repository for 
unauthorized copies that crackers try to propagate via IoT 
networks. This study developed a HTFDNN and Resnet 
CNN-based technique for recognizing software piracy and 
malware. We present the Hybrid Tensor Flow DNN to 
recognize stolen software, starting with source code 
plagiarism. To reduce source code plagiarism, tokenization 
and weighting procedures filter out noisy data [23]. The 
MRN also visualizes color images to recognize harmful 
infestations in IoT networks. The first database fed the 
preprocessing module raw data. Raw data is preprocessed 
for valuable characteristics. The preprocessed data is sent to 
the recognizing module. The detection module learns from 
signatures in databases two and four to recognize malware 

and pirated applications. The suggested system alerts the 
administrator if malicious behavior is seen in the 
network.The primary objectives of this presented 
techniqueare. 

 
•  Large-scale malware recognitions with higher accuracies  
•Software similarity recognitions from multiple 
programmers  
• identifications of pirated copies of actual software and 
malwares in minimal computational costs 
 
3.1. Malware Threat Detection 
 

Traditional techniques may address code obfuscation 
concerns; however, texture feature mining utilizing virus 
visualizations has a high computational cost. Furthermore, 
these feature retrieval strategies do not work well with large 
volume of malware data. Malware is constantly being 
created, updated, and manipulated, making detection more 
difficult. The recommended malware detection strategy 
attempts to address all of the difficulties. This research 
offered a mixed deep learning strategy for recognizing 
pirated and Malware threats on the industrial IoT cloud. The 
Tensor Flow DNN is intended to recognize pirated software 
by plagiarising source code. The recommended strategy's 
combined solutions are pretty encouraging in terms of 
classification performance.  

 
1) Data Preprocessing 
 To translate virus detection challenges as image 
categorization challenges, colour images are created from 
raw binary files which distinguishes the proposed work 
from other methods. Malware binaries are converted into 
colour equivalents instead of gray scale 256 colours for 
recovering more characteristics. Moreover, enhanced 
malware image characteristics perform well in malware 
family classifications [24]. Previously, multiple virus 
detection systems based on MLTs produced superior results 
by using grayscale images which were visualized, features 
retrieved and virus types classified. The categorization 
reliability is improved by applying feature reduction 
procedures to reduce the amount of characteristics in the 
collection. Deep learning procedures outperform large 
malware datasets because these procedures may employ 
filters to reduce noise automatically. As a result, employing 
color images yields superior outcomes when using DLTs.  
Malware binary files are converted to colour images 
through four stages. The raw binary files are first converted 
to hexadecimal strings (0-15) followed by 8-bit segment 
hexadecimal streams, measured as unsigned integers 
between 0 and 255. These 8-bit vectors are then converted 
to 2D matrices and each 8-bit integer generated in these 2D  
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Figure 1. The process of the proposed methodology 

 
matrices are represented by shades of red, green, and blue 
colours. Data pre-processing steps are depicted in Figure 1. 
 
2) DCNNs (Deep CNNs) 
 DCNNs were established for thorough malware 
data analyses and consists of 5 modules (refer Figure 1). 
Training images are fed to the input layer. First, a 
convolution layer reduces noise and improves signal 
qualities. A pooling layer reduces data overhead while 
retaining important information [25]. Finally, a entirely 
linked layer is utilized to transform the 2D array to a 1D 
array, then fed into the appropriate classifier. Fourth, the 
classifier is utilized to recognize malware families from 
respective images. 
 
3) Convolution Layer 
 The key characteristics are acquired by applying a 
convolution layer to reduce the image of attributes. 
Convolution layers through interpretations, rotations, and 
scale invariance minimize issuer of over fits introducing 
generalizations in basic designs. As indicated in equation 1, 
the convolutional layer's input collects maps. 
𝑥𝑥𝑗𝑗𝑙𝑙 = 𝑓𝑓(∑ 𝑥𝑥𝑗𝑗𝑙𝑙−1 ∗ 𝑘𝑘𝑖𝑖𝑗𝑗𝑙𝑙 + 𝑏𝑏𝑗𝑗𝑙𝑙𝑖𝑖∈𝑀𝑀𝑗𝑗 )                     (1) 
 M_jindicates given map clusters; k_ij^l stands for 
convolution kernel combining ith and jth input feature maps 

while b_j^l represents consistent bias of ith feature map, and 
f represents the activation function. 
4) Pooling Layer 
 Pooling layers execute maximum or average 
pooling and called as sub-sampling layers. They are used to 
reduce the visual distortion effects and are typically 
unaffected in backward propagations. Also the 
characteristics are reduced while enhancing recommended 
DCNN functionalities.  Equation (2) demonstrates the 
aforesaid descriptions. 
𝑥𝑥𝑗𝑗𝑙𝑙 = 𝑓𝑓(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥𝑗𝑗𝑙𝑙−1) + 𝑏𝑏𝑗𝑗𝑙𝑙)      (2) 
 In which down (.) performs a pooling task, and b 
represents biasvalue. 
 Fully Connected Layer 
 It categorizes the outcome of pooling layer.Each 
neuron communicates with the neuron before it via this 
layer. It is designed to increase paradigm generalization 
capability by reducing over fits. Noises are eliminated by 
the use of filters on original data during fine-tuning where 
the count and sizes of kernels improve signal characteristics. 
 Learning 
 Malware samples are grouped according to their 
family or class.  Equation (3) depicts losses while training 
data. 
𝐿𝐿𝑑𝑑𝐿𝐿𝐿𝐿 = − log � 𝑒𝑒𝑒𝑒𝑒𝑒(𝑓𝑓𝑧𝑧𝑧𝑧)

∑ 𝑒𝑒𝑒𝑒𝑒𝑒𝑘𝑘 (𝑓𝑓𝑧𝑧𝑧𝑧)
�         (3) 

 In whichf_ztrepresents the rank for the kth class; 
and f_ztindicates the score for the appropriate family. The 
attributes of the model are learned using Adam optimizer to 
lower the loss that occurred on the training data. 
3.2. Software Piracy Threat Detection 
 Unlawful copying or dissemination of copyrighted 
software aptly define software piracies which have no legal 
meaning. Software piracies are types of copyright 
infringements that occur in higher education settings where 
peer’s knowledge is exchanged. Software piracies can be 
prosecuted under copyright infringement statutes. DLTs 
can play major roles in identifying pirated software 
compiled from multiple  source codes. As demonstrated in 
Figure 1, plagiarised version of the programme is a pirated 
copy of software where crackers have copied original 
software’s logic. Pre-processing methods are begun by 
tokenizing source codes to reduce data’s dimensions and 
acquire important features that can be utilised to identify 
plagiarism even when split across various source codes. 
1) Pre-Processing and Feature Extraction 
 Since recognizing source code’s syntax and 
semantics is complex, plagiarism detection techniques were 
applied to trace software thefts. The methods use stemming 
root words and frequency retrievals. They decode codes and 
filter out noises. Unwanted information is removed, such as 
special symbols, constants, and stop words. Tokenization is 
then utilized to turn the cleansed data into useable tokens. 
To mine more valuable information, pre-processing 
processes employ stemming of root words, and limitations 
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on frequency of words. Following that, the contribution of 
each token is weighed. In the weighting phase, the TFIDF 
and Log TF are used. In Equation 4, TFIDF is defined. 
𝑡𝑡𝑓𝑓𝑡𝑡𝑑𝑑𝑓𝑓(𝑡𝑡,𝑑𝑑,𝐷𝐷) = 𝑡𝑡𝑓𝑓(𝑡𝑡,𝑑𝑑) × 𝑡𝑡𝑑𝑑𝑓𝑓(𝑡𝑡,𝐷𝐷)   (4) 
 In which t indicates token, f indicates the number 
of frequency, d represent every individual document, and D 
indicates all documents in the dataset. 
2) Hybrid Tensor Flow DNN And MRN 
 
 The effectiveness of MLTs can be determined 
based on its learning of suitable data representations called 
representative learning. Traditional MLTs demand task 
specific data extractions using preset techniques. DLTs, on 
the other hand,  depend on neural networks to learn effective 
feature representations automatically through nonlinear 
transformations of raw data characteristics like word 
vectors or image pixels. DLTs train themselves based on 
objective functions which implant model's aims i.e. they 
successfully extract salient features that are useful for goals 
without models being knowledgeable in the domain. This 
work acquires harmful code image characteristics based on 
a deep network paradigm. Deep learning networks have 
varied architectures and operate differently. However, as 
network depth increases, the deep learning network will 
encounter various drawbacks, such as the degradation 
challenge, which means that adding more layers to a 
sufficiently deep network would result in more training 
mistakes. However, the ResNet network addresses these 
drawbacks. Furthermore, these deep networks offer 
numerous advantages and have outperformed the existing 
network in image detection. We assess the reliability of 
these deep networks and then acquire byte sequence binary 
image characteristics using the hybrid tensor flow DNN and 
modified ResNet50 deep learning networks. 
 
 Deep Learning With Tensor flow Framework 
 Tensor Flow is a ML system for high-level 
calculations in a complicated environment. And use Tensor 
Flow's API to implement many machines and deep learning 
procedures. It characteristics many sorts of layers that may 
be designed for sophisticated computations, data training, 
and supervising the state-run of each function. Using the 
Tensor Flow framework, the in-depth learning strategy aims 
to recognize related source codes in many programming 
languages. The acquired similar principles are then utilized 
to recognize the pirated program. The weighting values are 
fed into the deep learning paradigm as input. Data inputs 
and outputs are built up in dense layers also called 
absolutely linked layers. Three thick layers of 100, 50, and 
30 neurons have been used in this work. Data is received by 
the first layer through input variables with input shape 
parameters. Plagiarised code is targeted by dense layers 
which employ resultant variables. Equation (5) depicts 
positive portions of arguments. 
𝑓𝑓(𝑥𝑥) = 𝑥𝑥+ = max (0, 𝑥𝑥)                                                (5) 

 In which x indicates the input to the equivalent 
neurons, and sigmoid is described in equation 6. 
𝑆𝑆(𝑥𝑥) = 1

1+𝑒𝑒−𝑥𝑥
             (6) 

 In which S indicates the sigmoid function. The 
Adam optimizer, also known as the stochastic descent 
gradient, is employed in the compilation and optimization 
of deep learning paradigms. For each limitation, it evaluates 
the discrete adaptive learning rates. For example, equations 
7 and 8 show the decaying means of past squared gradients. 
𝑚𝑚𝑡𝑡 = 𝛽𝛽1𝑚𝑚𝑡𝑡−1 + (1 − 𝛽𝛽1)𝑔𝑔𝑡𝑡           (7) 
𝑣𝑣𝑡𝑡 = 𝛽𝛽2𝑣𝑣𝑡𝑡−1 + (1 − 𝛽𝛽2)𝑔𝑔2                             (8) 
 In which m_tand v_t stand for the first and second 
instant gradients with predictable meanings. The 
exponential running average of the first gradient m_t  and 
square gradient v_t are updated using estimates. The use of 
tensor flows in this work contributes in the following ways: 
It combines many types of computational APIs, such as the 
GitHub framework, to create and enhance MLTs for 
substantial data sets. 
•  This framework automatically trains the system using 
input, hidden, and outcome layers with varying activation 
functions. 
• It supplies dependable services while also upgrading and 
expanding the recommended framework. 
 
While deep learning techniques have shown promise in 
image detection, they are limited by two drawbacks: 
vanishing/exploding gradients and degradation. 
Normalized initialization and intermediate normalization 
layers have addressed vanishing/exploding gradients. But 
the deep learning network has another difficulty: 
degradation. The accuracy will progressively climb to 
saturation and then rapidly fall. But the issue isn't oversizing. 
A network with more layers (degraded network) has a more 
significant mistake rate in the equal training round. But the 
residual network could help with degradation. The 
following section describes the MRN or Resnet CNN 
process. 
 
MRN or Resnet CNN 
 
 The residual unit is introduced in the residual 
network, and its framework is depicted in Figure 2. The 
residual mapping is established in the residual network as 
follows: 
𝐻𝐻(𝑥𝑥) = 𝐹𝐹(𝑥𝑥) + 𝑥𝑥                     (9) 
 In which F(x) is the residual function. The new 
residual unit connection strategy is a shortcut connection 
which is specified in the residual network as follows: 
𝑦𝑦 = 𝐹𝐹(𝑥𝑥,𝑊𝑊𝑖𝑖) + 𝑥𝑥              (10) 
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Figure 2: The residual unit. 

 
 
In which F(x,W_i ) denotes to=be-learned residual mapping 
to be learned. For the example in Figure 2, the F(x,W_i )in 
which σ indicates ReLU, F + x indicates the shortcut 
connection. If the dimensions of X and F(x) are varied in 
the deep learning network, is described as the below: 
𝑦𝑦 = 𝐹𝐹(𝑥𝑥,𝑊𝑊𝑖𝑖) + 𝑊𝑊𝑠𝑠𝑥𝑥                                             (11) 
 where W_sis a linear projection of the x to make it 
consistent with F(x) dimension, the degradation difficulty is 
reduced by importing residual data and residual units into 
the network. We ran many tests to assess the Reset50 
network's reliability. The results demonstrate that ResNet50 
can acquire byte sequence color picture characteristics. 
Figure 3 depicts the ResNet50 network framework. 
ResNet50 has 50 layers and 3.8 × 109  parameters [26]. 
  
The byte sequence level binary picture visualization 
strategy takes the malicious code's raw byte data as the 
image pixels' original data and arranges them in byte order, 
disregarding their position information. This section 
proposes an image conversion strategy including position 
data. The malware's raw bytes contain two types of data: 
location and pixel. The transformed binary image could 
then collect more information to improve harmful code 
categorization. The malware visualization in this section is 
also based on raw bytes, which raises two drawbacks: first, 
how to transform dangerous code data into pixel data, and 
second, how to select the image format. The malware's raw 
byte is still considered 8-bit unsigned integer data, and 
every five bytes is a group. Each data group contains two 
bytes of position data and three-pixel information.  
 

 
 
Figure 3. The structure of the ResNet50 network. 
 

 Each byte's value range is [0, 255], and each image 
is 256 ∗ 256. The image's bottom left data coordinates are 
set to (0, 0). The image's pixels are all set to 0. The first byte 
of each data group represents the pixel's X coordinate, the 
second the Y coordinate, and the final three the pixel's 
values. Then each set of data becomes a pixel in the image. 
If the data exceed 255, the 255 remainder procedure is 
applied. The binary image is 256 ∗ 256 and does not require 
standardization. This strategy allows the deep learning 
network to perform better at the equal depth. 
 Entropy sequence formation based data 
distribution 
 Entropy is a range of data distribution randomness 
and uncertainty. Divide the malware's raw bytes into 
continuous data blocks (00h-FFh in hexadecimal), evaluate 
the entropy of each block, and finally, connect the entropy 
of each block according to the block order to produce the 
entropy sequence. Each byte's value range is [0, 255]. The 
block's data must be utilized to determine the entropy value. 
So the block size is 256. If the last block is less than 128 
bytes long, it is discarded from the entropy sequence. If not, 
a zero is added to the block to make it 256. For each block, 
evaluate entropy as follows: 
𝐻𝐻(𝑥𝑥) = −∑ 𝑝𝑝(𝑥𝑥𝑖𝑖) ∗ 𝑙𝑙𝑑𝑑𝑔𝑔2𝑝𝑝(𝑥𝑥𝑖𝑖)255

𝑖𝑖=0                         (12) 
 In which xi indicates a particular raw byte value 
and pi indicates the frequency of this value in the block, 
H(x) indicates the entropy value of the block, and the range 
of its value is zero to eight. Entropy is zero when all bytes 
in a block are equal. Entropy is eight if all values in the 
block are different. The entropy sequence is Hs = h1, h2, hn 
for a single raw byte divided into N blocks. A hybrid 
paradigm effectively recognizes malware threats. 
 Results and Discussion 
 A prototype system was built to test the 
effectiveness of the presented technique, and  is developed 
in Java. This study employs a 10-fold cross-validation 
strategy to ensure the accuracy and reliability of the test 
findings. The presented work employs measurements such 
as Accuracy, Recall, Precision, and F-measure. 
Precision is characterised as the proportion of accurately 
recognised positive observations to all anticipated positive 
observations. 
Precision = TP/(TP+FP)                                     (13) 
The proportion of recognised positive observations to total 
observations is described as recall. 
Recall = TP/(TP+FN)    (14) 
The F1 score is the weighted average of Precision and 
Recall. Therefore, it requires both false positives and false 
negatives. 
F1 Score = 2*(Recall * Precision) / (Recall + Precision) (15) 
Accuracy is measured in positives and negatives, as shown 
below: 
Accuracy = (TP+FP)/(TP+TN+FP+FN)  (16) 
4.1. Performance Evaluation of Malware Detection 
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 The influence is measured on the basis of 
classification performance for various malware image ratios. 
The image ratios are 224*224 and 229*229. The Leopard 
Mobile dataset has 14,733 malicious and 2486 benign 
samples, and the 229*229 ratio outperforms the 224*224 
ratio. The classification accuracy of 229*229 and 224*224 
images differs significantly. So, the 229*229 image ratio is 
a good choice for the presented malware recognition 
method. This study compares the outcomes of multiple 
image ratios. The Leopard Mobile dataset's 229*229 image 
ratio achieved 98.14 percent testing accuracy in 34s. 
 

  
Figure 4. Accuracy comparison between the presented and 
traditional ML methods for malware detection 
 
 Figure 4 depicts the accuracy comparison between 
the presented and traditional malware detection methods. 
The graph shows that these methods have been evaluated 
with two types of image ratio pixels (229*229 vs 224*224). 
When the image ratio is 229*229, the proposed method 
HTFDNN+MRN has 98.14 percent accuracy, compared to 
97.46 percent for Tensor Flow and 85.71 percent for SVM. 
When the image ratio is 224*224, the presented 
HTFDNN+MRN has 96.54% accuracy, while the Tensor 
flow approach has 95.1% and the SVM has 89.24%. For 
image ratio 229*229, the presented technique has high 
accuracy rate. 
 

 
Figure 5. Precision comparison between the proposed and 
existing MLTs for detecting malwares  
 
 Figure 5 compares the precision of presented and 
traditional techniques. The malware dataset uses two 

classes: malicious and benign. Overall, 90% of classes are 
recognized for malicious files, with 10% missing. The 
HTFDNN+MRN technique outperforms the traditional 
methods in terms of precision. 
 

 
Figure 6. Comparison result of recall between the proposed 
and existing ML methods for malware detection 
 
 Figure 6 shows the recall comparison between the 
proposed and traditional malware detection methods. As 
shown in the figure, the presented technique outperforms 
SVM and Tensor flow techniques in terms of recall. For 
229*229 images, the HTFDNN+MRN has a recall rate of 
94.68%, while the Tensor flow  and SVM has 91.47% and 
85.24%, respectively. When the image ratio is 224*224, the 
HTFDNN+MRN has 91.67% recall rate, while the Tensor 
flow and SVM has 85.29% and 71.24%, respectively So this 
technique has high recall rate for 229*229 image ratio. 
 

 
Figure 7. Comparison result of F-measure between the 
proposed and existing MLTs in malware detection 
 
 Figure 7 shows the f-measure comparison between 
the presented and traditional malware detection techniques. 
The figure shows that the proposed method outperforms 
existing SVM and Tensor flow methods in terms of recall. 
When the image ratio is 229*229, the HTFDNN+MRN has 
a high f-measure rate of 95.67%, compared to 92.68% for 
Tensor flow and 87.25 percent for SVM. When the image 
ratio is 224*224, this presented technique has 92.84% f-
measure rate, while the Tensor flow and SVM have 86.24% 
and 81.27 %, respectively. With 229*229 image ratio, this 
suggested approach has high f-measure rate. 

0
50

100
150

P
re

ci
si

o
n
(%

)

methods

224*224 image ratio 229*229 image ratio

0
50

100

R
ec

al
l 
(%

)

methods

224*224 image ratio 229*229 image ratio

60
80

100

F-
m

ea
su

re
(%

)

methods

224*224 image ratio 229*229 image ratio



IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.10, October 2022 
 

 

244 

 

4.2.Performance Evaluation for Software Piracy 
 
 The software plagiarism measure examines pirated 
software's code. The presented software piracy technique 
was tested on GCJ ( Google Code Jam) source code dataset. 
Initializations were extracting token from sources with 
details on frequencies. Subsequently, TFIDF (term 
frequency and inverse document frequency) and LogTF 
(logarithm term frequency) were used to select and extract 
token weights. Each token's contribution is weighted 
differently in the document or across all documents. 
 

 
Figure 8. Detection accuracy of the proposed 
HTFDNN+MRN for piracy software detection 
 
Figure 8 shows that the presented HTFDNN+MRN 
outperforms existing SVM and tensor flow based 
techniques with 98.24% detection accuracy for 1000 byte 
packets. Thus, the HTFDNN+MRN outperforms existing 
algorithms in terms of detecting results with high accuracy. 
The suggested learning techniques are robust to training 
data noise and thus achieve better accuracy rates while 
avoiding local optima. These results confirm that the 
described technique can recognize piracy software more 
effectively and reliably. 
 
Conclusion 
 
 The key obstacles in cybersecurity using IoT-
based big data are detecting software piracy and malware 
threats. We present a hybrid Tensor flow DNN with 
modified Residual Network approach for detecting pirated 
and malicious files. First, a Tensor Flow neural network is 
presented to recognize software plagiarism. To test the 
proposed approach, 100 GCJ programmers' source code 
files were collected. Code sources are pre-processed by 
eliminating noises and capturing useful tokens. Feature’s 
contributions are assigned weights based on TFIDF and 
LogTF weighting strategies. The weighting values are then 
fed into the deep learning algorithm. To detect malware 
using IoT, a novel hybrid approach and colour image 
visualisation methodology is proposed. Current SVM and 
tensor flow based software piracy detection techniques are 
outperformed by 98%. The HTFDNN+MRN technique has 

98.14 %, Tensor flow has 97.46 %, and SVM has 85.71 % 
when the image ratio is 229*229. Based on the test findings, 
the presented scheme is superior to other techniques in 
distinguishing malware variants of related families. The 
visual characteristics of malware are critical to future 
malware classification performance. Exploit entropy 
feature extraction and present reliable malware 
classification techniques. 
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