
IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.10, October 2022

237

Manuscript received October 5, 2022
Manuscript revised October 20, 2022
https://doi.org/10.22937/IJCSNS.2022.22.10.31

Hybrid Tensor Flow DNN and Modified Residual Network Approach
for Cyber Security Threats Detection in Internet of Things

Abdulrahman Mohammed Alshehri1†,* and Mohammed Saeed Fenais2††,
alshehri3441@gmail.com moh.fenais@gmail.com

Riyadh Schools, Riyadh, kingdom of Saudi Arabia

Summary
The prominence of IoTs (Internet of Things) and exponential
advancement of computer networks has resulted in massive
essential applications. Recognizing various cyber-attacks or
anomalies in networks and establishing effective intrusion
recognition systems are becoming increasingly vital to current
security. MLTs (Machine Learning Techniques) can be developed
for such data-driven intelligent recognition systems. Researchers
have employed a TFDNNs (Tensor Flow Deep Neural Networks)
and DCNNs (Deep Convolution Neural Networks) to recognize
pirated software and malwares efficiently. However, tuning the
amount of neurons in multiple layers with activation functions
leads to learning error rates, degrading classifier's reliability.
HTFDNNs (Hybrid tensor flow DNNs) and MRNs (Modified
Residual Networks) or Resnet CNNs were presented to recognize
software piracy and malwares. This study proposes HTFDNNs to
identify stolen software starting with plagiarized source codes.
This work uses Tokens and weights for filtering noises while
focusing on token’s for identifying source code thefts. DLTs
(Deep learning techniques) are then used to detect plagiarized
sources. Data from Google Code Jam is used for finding software
piracy. MRNs visualize colour images for identifying harms in
networks using IoTs. Malware samples of Maling dataset is used
for tests in this work.
Keywords:
IoT, malware detection, software piracy, cyber security, data
mining, Tensor flow DNN.

1. Introduction

Malware's exponential growth has recently posed a
serious cyber security threat. The number of new malware
variants has surpassed a billion in the last three years,
according to the Symantec internet security threat report [1].
Hackers are increasingly using techniques like packing and
encryption to create new malware variants. Thus, rapid and
accurate malware variant identification can help cyber
security professionals understand their harmfulness and
other attributes, which is valuable research [2]. The impacts
of cyber risks on: Public/private institutional information
systems; goodwill and stakeholder confidences are being
increasingly felt. Cyber attacks break into corporate IT
infrastructures for disrupt businesses or amusements or
challenges. Websites or servers go down in cyber
challenges between professionals. [3]. To reclaim service,

access, or websites, current cyber threats and attackers
require payment from the victimised enterprise.

Insurance policies were designed for protecting
businesses against financial consequences due to threats on
the Internet. Organizations specializing in risk assumptions
and pooling foresaw financial opportunities in this area [4].
Many insurances exist now for cyber security breaches.
When these organizations were new to this domain, it was
difficult for them to collect data about electronic losses, but
they have educated themselves on pricing policies and
predicting potential losses. IoTs use electronic chips,
sensors, and other moving hardware gadgets to get
connected physically called "Things" to the internet.
Devices in IoTs are identified by RFIDs (radio frequency
identifiers) which can be controlled and monitored from
distances [5]. IoTs connect intelligent physical objects,
services, cloud computers, and applications irrespective of
locations. IBM had predicted 50 billion internet connected
devices [6]. Technology enables IOTs can be used to build
smart cities, academics, e-commerce/banking, healthcare,
industries, entertainments, and protections of human being
to name a few of their applications. Networks connecting
IoT devices can be attacked by Malwares while pirated
software target industrial cloud IoTs thus compromising
security.

Software piracy has emerged as a major issue of the
software industry. It can be defined as unauthorized usage
of complete software or portions without any legal license
and agreement. Most individual uses of software are
unaware that pirating software is a severe felony committed.
Preventing software piracies are critical for the industry's
growth as developments in real-world applications consume
significant amounts of efforts in terms of development ideas
and executions. Many approaches have been employed in
this fight against software piracy. Software piracy is the
illegal reuse of other people's source codes to create
software that looks like the original. The cracker may
reverse engineer the original software's logic and design it
in another type of source code [7]. It is rapidly increasing
and costs the software industry a lot of money [8].
According to the Business Software Alliance (BSA) 2016

https://doi.org/10.22937/IJCSNS.2020.20.10.01
mailto:alshehri3441@gmail.com
mailto:moh.fenais@gmail.com

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.10, October 2022

238

report, public software piracy costs businesses up to $52.2
billion annually. Many studies have shown that anywhere
from 5% to 20% of all software contains plagiarised source
codes. Intelligent software plagiarism detection is required
to detect pirated software source code. Researchers have
proposed multiple approaches for identifying software
birthmarks which are based on design features and
appropriate estimations of procedures copied. Though
studies have thoroughly examined programmes in several
perspectives of software piracy and theft detections, lack of
objective metrics for software comparisons in terms of
infringement detections are very less. An analysis of source
code structure includes syntax trees, graph behaviour, and
subroutine function call graphs [9]. This makes it difficult
to detect if a cracker reuses the original software's logic in
a different programming language. The industrial IoT cloud
services can safeguard smart devices by detecting software
plagiarism and malware[10]. Currently, malware
recognition methods fall into two categories: static feature-
based and dynamic feature-based. Static malware detection
analyses the malware's raw bytes or disassembles it to
analyse its opcodes, file structure, and other file attributes.

Attacks on networked IoTs are becoming easier as
these networks grow where Malwares use internet to target
nodes, computers, and smart phones. Many techniques have
been proposed for detecting Windows based malwares
where these methods can be dynamic or static. Dynamic
approaches use code executions in virtual environments to
learn malware patterns [11]. Suspicious behaviours can be
identified by examining function calls or exploring
parameters or data flows or tracing instructions or visual
analyses of codes. Learning approaches use activation
function’s error rates to adjust neuron counts in layers
where high errors result in degraded classifier performances.
This research work proposes HTFDNNs and MRNs or
Resnet CNNs for detecting software piracy and malwares.

The remaining of the research work is: Section 2
review the recent techniques for protecting the malicious
attacks using advanced MLTs. section 3 briefs the proposed
methodology. section 4 briefs the results and its explanation.
section 5 deals with the conclusion and future work.

2. Literature Review

In this part, some recent cyber security techniques that
work better when combined than when run separately.
Musman et al. [12] implemented Cyber Security Game for
determining best budgetary security measures. Their
implementation considered cyber event’s risk level and
chances of threats. When more systems are interconnected
all possible attack paths were defended in the Game, but

attackers need only one path to succeed. The
implementation minimized maximum cyber risk using
MiniMax game theory. The study demonstrated their Cyber
Security Game's methods using a point-of-sale system.
Fielder et al. [13] introduced a new control game in which
the security manager must pick between multiple levels of
implementation of cyber security control, and a commodity
attacker must choose between multiple targets to attack. We
created a decision-making tool and a case study based on
existing regulatory standards to compare these techniques.
Feng et al. [14] developed innovative cyber risk
managements for blockchain-based services. The scheme
adopted cost-effective cyber insurances for reducing cyber
risks on blockchain networks and assuming blockchain
services included infrastructure providers, blockchain
providers, insurers, and users. To keep blockchains on,
suppliers bought computing resources with consensus from
infra-framework suppliers like clouds before releasing
blockchain services to customers. For modelling and
evaluating distributed computing investments, Dhamal et al.
[15] used stochastic game frameworks using dynamic
players and where players were rewarded for overcoming
problems or contributing computational resources but paid
the cost of computational power and time consumed for
usage like blockchain mining. On the other hand, players
with cost parameters below a specific threshold invest
maximal power in Markov perfect equilibrium. Players
don't need to know the system state. As in volunteer
computing, a payment for contributing to a common central
entity's processing capacity is then considered. We use
simulations to investigate the impact of players' entrance
and departure rates on utilities in both scenarios. Kim et al.
[16] developed a new Bitcoin mining protocol along with
payment incentives applied on peer-to-peer groups in
distributed computation network systems. Their
investigations maximized Bitcoin users' benefits while
using their cooperative game paradigm.

The presented technique is compared to other current
schemes using system-level simulations. According to the
simulation results, this solution exceeds existing Bitcoin
schemes in terms of fairness and efficiency. Shomer et al.
[17] studied the success rate of block-hiding mining in
Bitcoin-like networks. Find two block-hiding techniques
that outperform the typical mining strategy in this parameter
space. This study recommends relative hashing power to
measure a miner's influence on the network. But only when
this measure of impact crosses a particular threshold.
Grover et al. [18] presented CNNs and ANNsto recognize
malware risks in data files across IoT data networks. While
the CNN-based paradigm recognizes malware via pictures,
the ANN-based paradigm distinguishes between malware
and ordinary via incoming data traffic. Naeem et al. [19]
developed MTHS (Malware Assault Hunting System) that
transformed malware binaries into colour images for
efficient malware recognitions. The study created baseline

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.10, October 2022

239

accuracy comparisons of MTHS with traditional malware
detection methods. Their scheme was tested on Windows
and Android software datasets where their MTHS
performed better in terms of reaction times and detection
accuracies, outperforming MLTs and DLTs. Aslan et al.
[20] introduced a new hybrid architecture that integrated
pre-trained networks optimally. The study collected data
where their designed DNNs were trained on evaluated on
Malimg, BIG 2015, and Malevis datasets. The study’s
findings showed that their suggested procedure accurately
classified malwares while outperforming other methods and
scored 97.78% accuracy on the Malimg dataset exceeding
most malware detection techniques based on MLTs. Bozkir
et al. [21] examined modern convolutional neural networks
(Resnet, Inception, DenseNet, VGG, AlexNet) with
paradigm generation and inference time. A unique malware
data set with 8750 training and 3644 test examples across
25 classes was also recommended and utilized. Using
DenseNet networks, the maximum accuracy was 97.48 %
using 3-channel (RGB) images. Ullah et al. [22] used a
combined scheme where DLTs recognized pirated software
and malwares- in networked Iots while TFDNNs identified
pirated applications. Then deep learning recognizes source
code plagiarism.. The DCNN also recognizes harmful
infections in IoT networks using color images. The testing
findings show that the presented technique to find IoT
cybersecurity threats performs better than existing
procedures. The existing system offers some benefits and
drawbacks based on the preceding study. Unknown
malware detection is a significant challenge.

3. Proposed Methodology

This paper suggests a paradigm of safety for industrial
IoT’s cyber security threats as depicted in Figure 1. The
malware binaries and pirated software files are processed
using 4 cloud storage databases. The first database contains
raw network traffic data, while the second database contains
a list of previous virus data, and the third database contains
new virus signatures. Cracker stores stole software in IoT
devices in database 4. It acts as a repository for
unauthorized copies that crackers try to propagate via IoT
networks. This study developed a HTFDNN and Resnet
CNN-based technique for recognizing software piracy and
malware. We present the Hybrid Tensor Flow DNN to
recognize stolen software, starting with source code
plagiarism. To reduce source code plagiarism, tokenization
and weighting procedures filter out noisy data [23]. The
MRN also visualizes color images to recognize harmful
infestations in IoT networks. The first database fed the
preprocessing module raw data. Raw data is preprocessed
for valuable characteristics. The preprocessed data is sent to
the recognizing module. The detection module learns from
signatures in databases two and four to recognize malware

and pirated applications. The suggested system alerts the
administrator if malicious behavior is seen in the
network.The primary objectives of this presented
techniqueare.

• Large-scale malware recognitions with higher accuracies
•Software similarity recognitions from multiple
programmers
• identifications of pirated copies of actual software and
malwares in minimal computational costs

3.1. Malware Threat Detection

Traditional techniques may address code obfuscation
concerns; however, texture feature mining utilizing virus
visualizations has a high computational cost. Furthermore,
these feature retrieval strategies do not work well with large
volume of malware data. Malware is constantly being
created, updated, and manipulated, making detection more
difficult. The recommended malware detection strategy
attempts to address all of the difficulties. This research
offered a mixed deep learning strategy for recognizing
pirated and Malware threats on the industrial IoT cloud. The
Tensor Flow DNN is intended to recognize pirated software
by plagiarising source code. The recommended strategy's
combined solutions are pretty encouraging in terms of
classification performance.

1) Data Preprocessing
 To translate virus detection challenges as image
categorization challenges, colour images are created from
raw binary files which distinguishes the proposed work
from other methods. Malware binaries are converted into
colour equivalents instead of gray scale 256 colours for
recovering more characteristics. Moreover, enhanced
malware image characteristics perform well in malware
family classifications [24]. Previously, multiple virus
detection systems based on MLTs produced superior results
by using grayscale images which were visualized, features
retrieved and virus types classified. The categorization
reliability is improved by applying feature reduction
procedures to reduce the amount of characteristics in the
collection. Deep learning procedures outperform large
malware datasets because these procedures may employ
filters to reduce noise automatically. As a result, employing
color images yields superior outcomes when using DLTs.
Malware binary files are converted to colour images
through four stages. The raw binary files are first converted
to hexadecimal strings (0-15) followed by 8-bit segment
hexadecimal streams, measured as unsigned integers
between 0 and 255. These 8-bit vectors are then converted
to 2D matrices and each 8-bit integer generated in these 2D

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.10, October 2022

240

Figure 1. The process of the proposed methodology

matrices are represented by shades of red, green, and blue
colours. Data pre-processing steps are depicted in Figure 1.

2) DCNNs (Deep CNNs)
 DCNNs were established for thorough malware
data analyses and consists of 5 modules (refer Figure 1).
Training images are fed to the input layer. First, a
convolution layer reduces noise and improves signal
qualities. A pooling layer reduces data overhead while
retaining important information [25]. Finally, a entirely
linked layer is utilized to transform the 2D array to a 1D
array, then fed into the appropriate classifier. Fourth, the
classifier is utilized to recognize malware families from
respective images.

3) Convolution Layer
 The key characteristics are acquired by applying a
convolution layer to reduce the image of attributes.
Convolution layers through interpretations, rotations, and
scale invariance minimize issuer of over fits introducing
generalizations in basic designs. As indicated in equation 1,
the convolutional layer's input collects maps.
𝑥𝑥𝑗𝑗𝑙𝑙 = 𝑓𝑓(∑ 𝑥𝑥𝑗𝑗𝑙𝑙−1 ∗ 𝑘𝑘𝑖𝑖𝑗𝑗𝑙𝑙 + 𝑏𝑏𝑗𝑗𝑙𝑙𝑖𝑖∈𝑀𝑀𝑗𝑗) (1)
 M_jindicates given map clusters; k_ij^l stands for
convolution kernel combining ith and jth input feature maps

while b_j^l represents consistent bias of ith feature map, and
f represents the activation function.
4) Pooling Layer
 Pooling layers execute maximum or average
pooling and called as sub-sampling layers. They are used to
reduce the visual distortion effects and are typically
unaffected in backward propagations. Also the
characteristics are reduced while enhancing recommended
DCNN functionalities. Equation (2) demonstrates the
aforesaid descriptions.
𝑥𝑥𝑗𝑗𝑙𝑙 = 𝑓𝑓(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥𝑗𝑗𝑙𝑙−1) + 𝑏𝑏𝑗𝑗𝑙𝑙) (2)
 In which down (.) performs a pooling task, and b
represents biasvalue.
 Fully Connected Layer
 It categorizes the outcome of pooling layer.Each
neuron communicates with the neuron before it via this
layer. It is designed to increase paradigm generalization
capability by reducing over fits. Noises are eliminated by
the use of filters on original data during fine-tuning where
the count and sizes of kernels improve signal characteristics.
 Learning
 Malware samples are grouped according to their
family or class. Equation (3) depicts losses while training
data.
𝐿𝐿𝑑𝑑𝐿𝐿𝐿𝐿 = − log � 𝑒𝑒𝑒𝑒𝑒𝑒(𝑓𝑓𝑧𝑧𝑧𝑧)

∑ 𝑒𝑒𝑒𝑒𝑒𝑒𝑘𝑘 (𝑓𝑓𝑧𝑧𝑧𝑧)
� (3)

 In whichf_ztrepresents the rank for the kth class;
and f_ztindicates the score for the appropriate family. The
attributes of the model are learned using Adam optimizer to
lower the loss that occurred on the training data.
3.2. Software Piracy Threat Detection
 Unlawful copying or dissemination of copyrighted
software aptly define software piracies which have no legal
meaning. Software piracies are types of copyright
infringements that occur in higher education settings where
peer’s knowledge is exchanged. Software piracies can be
prosecuted under copyright infringement statutes. DLTs
can play major roles in identifying pirated software
compiled from multiple source codes. As demonstrated in
Figure 1, plagiarised version of the programme is a pirated
copy of software where crackers have copied original
software’s logic. Pre-processing methods are begun by
tokenizing source codes to reduce data’s dimensions and
acquire important features that can be utilised to identify
plagiarism even when split across various source codes.
1) Pre-Processing and Feature Extraction
 Since recognizing source code’s syntax and
semantics is complex, plagiarism detection techniques were
applied to trace software thefts. The methods use stemming
root words and frequency retrievals. They decode codes and
filter out noises. Unwanted information is removed, such as
special symbols, constants, and stop words. Tokenization is
then utilized to turn the cleansed data into useable tokens.
To mine more valuable information, pre-processing
processes employ stemming of root words, and limitations

Cloud data storage

DS1 DS2 DS3 DS4

Analysis unit of Pirated Software and Malware Detection

Software Piracy Analysis

 Preprocessing

Tokenization

Tokens weighting

Normalization

Malware Analysis

Software Piracy threat Detection

Binary file

Hexa decimal strings
segmentation into 8 bit

detection m
odule

Hybrid Detection module (HTFDNN+MRN) Data Preprocessing module

8 bit vector to two
dimensional matrix of color

Dropout Output Input Hidden

Pirated + Malware

Integration IoT gateway

Response Unit

Respons

Update New signature

System Administrator

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.10, October 2022

241

on frequency of words. Following that, the contribution of
each token is weighed. In the weighting phase, the TFIDF
and Log TF are used. In Equation 4, TFIDF is defined.
𝑡𝑡𝑓𝑓𝑡𝑡𝑑𝑑𝑓𝑓(𝑡𝑡,𝑑𝑑,𝐷𝐷) = 𝑡𝑡𝑓𝑓(𝑡𝑡,𝑑𝑑) × 𝑡𝑡𝑑𝑑𝑓𝑓(𝑡𝑡,𝐷𝐷) (4)
 In which t indicates token, f indicates the number
of frequency, d represent every individual document, and D
indicates all documents in the dataset.
2) Hybrid Tensor Flow DNN And MRN

 The effectiveness of MLTs can be determined
based on its learning of suitable data representations called
representative learning. Traditional MLTs demand task
specific data extractions using preset techniques. DLTs, on
the other hand, depend on neural networks to learn effective
feature representations automatically through nonlinear
transformations of raw data characteristics like word
vectors or image pixels. DLTs train themselves based on
objective functions which implant model's aims i.e. they
successfully extract salient features that are useful for goals
without models being knowledgeable in the domain. This
work acquires harmful code image characteristics based on
a deep network paradigm. Deep learning networks have
varied architectures and operate differently. However, as
network depth increases, the deep learning network will
encounter various drawbacks, such as the degradation
challenge, which means that adding more layers to a
sufficiently deep network would result in more training
mistakes. However, the ResNet network addresses these
drawbacks. Furthermore, these deep networks offer
numerous advantages and have outperformed the existing
network in image detection. We assess the reliability of
these deep networks and then acquire byte sequence binary
image characteristics using the hybrid tensor flow DNN and
modified ResNet50 deep learning networks.

 Deep Learning With Tensor flow Framework
 Tensor Flow is a ML system for high-level
calculations in a complicated environment. And use Tensor
Flow's API to implement many machines and deep learning
procedures. It characteristics many sorts of layers that may
be designed for sophisticated computations, data training,
and supervising the state-run of each function. Using the
Tensor Flow framework, the in-depth learning strategy aims
to recognize related source codes in many programming
languages. The acquired similar principles are then utilized
to recognize the pirated program. The weighting values are
fed into the deep learning paradigm as input. Data inputs
and outputs are built up in dense layers also called
absolutely linked layers. Three thick layers of 100, 50, and
30 neurons have been used in this work. Data is received by
the first layer through input variables with input shape
parameters. Plagiarised code is targeted by dense layers
which employ resultant variables. Equation (5) depicts
positive portions of arguments.
𝑓𝑓(𝑥𝑥) = 𝑥𝑥+ = max (0, 𝑥𝑥) (5)

 In which x indicates the input to the equivalent
neurons, and sigmoid is described in equation 6.
𝑆𝑆(𝑥𝑥) = 1

1+𝑒𝑒−𝑥𝑥
 (6)

 In which S indicates the sigmoid function. The
Adam optimizer, also known as the stochastic descent
gradient, is employed in the compilation and optimization
of deep learning paradigms. For each limitation, it evaluates
the discrete adaptive learning rates. For example, equations
7 and 8 show the decaying means of past squared gradients.
𝑚𝑚𝑡𝑡 = 𝛽𝛽1𝑚𝑚𝑡𝑡−1 + (1 − 𝛽𝛽1)𝑔𝑔𝑡𝑡 (7)
𝑣𝑣𝑡𝑡 = 𝛽𝛽2𝑣𝑣𝑡𝑡−1 + (1 − 𝛽𝛽2)𝑔𝑔2 (8)
 In which m_tand v_t stand for the first and second
instant gradients with predictable meanings. The
exponential running average of the first gradient m_t and
square gradient v_t are updated using estimates. The use of
tensor flows in this work contributes in the following ways:
It combines many types of computational APIs, such as the
GitHub framework, to create and enhance MLTs for
substantial data sets.
• This framework automatically trains the system using
input, hidden, and outcome layers with varying activation
functions.
• It supplies dependable services while also upgrading and
expanding the recommended framework.

While deep learning techniques have shown promise in
image detection, they are limited by two drawbacks:
vanishing/exploding gradients and degradation.
Normalized initialization and intermediate normalization
layers have addressed vanishing/exploding gradients. But
the deep learning network has another difficulty:
degradation. The accuracy will progressively climb to
saturation and then rapidly fall. But the issue isn't oversizing.
A network with more layers (degraded network) has a more
significant mistake rate in the equal training round. But the
residual network could help with degradation. The
following section describes the MRN or Resnet CNN
process.

MRN or Resnet CNN

 The residual unit is introduced in the residual
network, and its framework is depicted in Figure 2. The
residual mapping is established in the residual network as
follows:
𝐻𝐻(𝑥𝑥) = 𝐹𝐹(𝑥𝑥) + 𝑥𝑥 (9)
 In which F(x) is the residual function. The new
residual unit connection strategy is a shortcut connection
which is specified in the residual network as follows:
𝑦𝑦 = 𝐹𝐹(𝑥𝑥,𝑊𝑊𝑖𝑖) + 𝑥𝑥 (10)

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.10, October 2022

242

Figure 2: The residual unit.

In which F(x,W_i) denotes to=be-learned residual mapping
to be learned. For the example in Figure 2, the F(x,W_i)in
which σ indicates ReLU, F + x indicates the shortcut
connection. If the dimensions of X and F(x) are varied in
the deep learning network, is described as the below:
𝑦𝑦 = 𝐹𝐹(𝑥𝑥,𝑊𝑊𝑖𝑖) + 𝑊𝑊𝑠𝑠𝑥𝑥 (11)
 where W_sis a linear projection of the x to make it
consistent with F(x) dimension, the degradation difficulty is
reduced by importing residual data and residual units into
the network. We ran many tests to assess the Reset50
network's reliability. The results demonstrate that ResNet50
can acquire byte sequence color picture characteristics.
Figure 3 depicts the ResNet50 network framework.
ResNet50 has 50 layers and 3.8 × 109 parameters [26].

The byte sequence level binary picture visualization
strategy takes the malicious code's raw byte data as the
image pixels' original data and arranges them in byte order,
disregarding their position information. This section
proposes an image conversion strategy including position
data. The malware's raw bytes contain two types of data:
location and pixel. The transformed binary image could
then collect more information to improve harmful code
categorization. The malware visualization in this section is
also based on raw bytes, which raises two drawbacks: first,
how to transform dangerous code data into pixel data, and
second, how to select the image format. The malware's raw
byte is still considered 8-bit unsigned integer data, and
every five bytes is a group. Each data group contains two
bytes of position data and three-pixel information.

Figure 3. The structure of the ResNet50 network.

 Each byte's value range is [0, 255], and each image
is 256 ∗ 256. The image's bottom left data coordinates are
set to (0, 0). The image's pixels are all set to 0. The first byte
of each data group represents the pixel's X coordinate, the
second the Y coordinate, and the final three the pixel's
values. Then each set of data becomes a pixel in the image.
If the data exceed 255, the 255 remainder procedure is
applied. The binary image is 256 ∗ 256 and does not require
standardization. This strategy allows the deep learning
network to perform better at the equal depth.
 Entropy sequence formation based data
distribution
 Entropy is a range of data distribution randomness
and uncertainty. Divide the malware's raw bytes into
continuous data blocks (00h-FFh in hexadecimal), evaluate
the entropy of each block, and finally, connect the entropy
of each block according to the block order to produce the
entropy sequence. Each byte's value range is [0, 255]. The
block's data must be utilized to determine the entropy value.
So the block size is 256. If the last block is less than 128
bytes long, it is discarded from the entropy sequence. If not,
a zero is added to the block to make it 256. For each block,
evaluate entropy as follows:
𝐻𝐻(𝑥𝑥) = −∑ 𝑝𝑝(𝑥𝑥𝑖𝑖) ∗ 𝑙𝑙𝑑𝑑𝑔𝑔2𝑝𝑝(𝑥𝑥𝑖𝑖)255

𝑖𝑖=0 (12)
 In which xi indicates a particular raw byte value
and pi indicates the frequency of this value in the block,
H(x) indicates the entropy value of the block, and the range
of its value is zero to eight. Entropy is zero when all bytes
in a block are equal. Entropy is eight if all values in the
block are different. The entropy sequence is Hs = h1, h2, hn
for a single raw byte divided into N blocks. A hybrid
paradigm effectively recognizes malware threats.
 Results and Discussion
 A prototype system was built to test the
effectiveness of the presented technique, and is developed
in Java. This study employs a 10-fold cross-validation
strategy to ensure the accuracy and reliability of the test
findings. The presented work employs measurements such
as Accuracy, Recall, Precision, and F-measure.
Precision is characterised as the proportion of accurately
recognised positive observations to all anticipated positive
observations.
Precision = TP/(TP+FP) (13)
The proportion of recognised positive observations to total
observations is described as recall.
Recall = TP/(TP+FN) (14)
The F1 score is the weighted average of Precision and
Recall. Therefore, it requires both false positives and false
negatives.
F1 Score = 2*(Recall * Precision) / (Recall + Precision) (15)
Accuracy is measured in positives and negatives, as shown
below:
Accuracy = (TP+FP)/(TP+TN+FP+FN) (16)
4.1. Performance Evaluation of Malware Detection

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.10, October 2022

243

 The influence is measured on the basis of
classification performance for various malware image ratios.
The image ratios are 224*224 and 229*229. The Leopard
Mobile dataset has 14,733 malicious and 2486 benign
samples, and the 229*229 ratio outperforms the 224*224
ratio. The classification accuracy of 229*229 and 224*224
images differs significantly. So, the 229*229 image ratio is
a good choice for the presented malware recognition
method. This study compares the outcomes of multiple
image ratios. The Leopard Mobile dataset's 229*229 image
ratio achieved 98.14 percent testing accuracy in 34s.

Figure 4. Accuracy comparison between the presented and
traditional ML methods for malware detection

 Figure 4 depicts the accuracy comparison between
the presented and traditional malware detection methods.
The graph shows that these methods have been evaluated
with two types of image ratio pixels (229*229 vs 224*224).
When the image ratio is 229*229, the proposed method
HTFDNN+MRN has 98.14 percent accuracy, compared to
97.46 percent for Tensor Flow and 85.71 percent for SVM.
When the image ratio is 224*224, the presented
HTFDNN+MRN has 96.54% accuracy, while the Tensor
flow approach has 95.1% and the SVM has 89.24%. For
image ratio 229*229, the presented technique has high
accuracy rate.

Figure 5. Precision comparison between the proposed and
existing MLTs for detecting malwares

 Figure 5 compares the precision of presented and
traditional techniques. The malware dataset uses two

classes: malicious and benign. Overall, 90% of classes are
recognized for malicious files, with 10% missing. The
HTFDNN+MRN technique outperforms the traditional
methods in terms of precision.

Figure 6. Comparison result of recall between the proposed
and existing ML methods for malware detection

 Figure 6 shows the recall comparison between the
proposed and traditional malware detection methods. As
shown in the figure, the presented technique outperforms
SVM and Tensor flow techniques in terms of recall. For
229*229 images, the HTFDNN+MRN has a recall rate of
94.68%, while the Tensor flow and SVM has 91.47% and
85.24%, respectively. When the image ratio is 224*224, the
HTFDNN+MRN has 91.67% recall rate, while the Tensor
flow and SVM has 85.29% and 71.24%, respectively So this
technique has high recall rate for 229*229 image ratio.

Figure 7. Comparison result of F-measure between the
proposed and existing MLTs in malware detection

 Figure 7 shows the f-measure comparison between
the presented and traditional malware detection techniques.
The figure shows that the proposed method outperforms
existing SVM and Tensor flow methods in terms of recall.
When the image ratio is 229*229, the HTFDNN+MRN has
a high f-measure rate of 95.67%, compared to 92.68% for
Tensor flow and 87.25 percent for SVM. When the image
ratio is 224*224, this presented technique has 92.84% f-
measure rate, while the Tensor flow and SVM have 86.24%
and 81.27 %, respectively. With 229*229 image ratio, this
suggested approach has high f-measure rate.

0
50

100
150

P
re

ci
si

o
n
(%

)

methods

224*224 image ratio 229*229 image ratio

0
50

100

R
ec

al
l
(%

)

methods

224*224 image ratio 229*229 image ratio

60
80

100

F-
m

ea
su

re
(%

)

methods

224*224 image ratio 229*229 image ratio

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.10, October 2022

244

4.2.Performance Evaluation for Software Piracy

 The software plagiarism measure examines pirated
software's code. The presented software piracy technique
was tested on GCJ (Google Code Jam) source code dataset.
Initializations were extracting token from sources with
details on frequencies. Subsequently, TFIDF (term
frequency and inverse document frequency) and LogTF
(logarithm term frequency) were used to select and extract
token weights. Each token's contribution is weighted
differently in the document or across all documents.

Figure 8. Detection accuracy of the proposed
HTFDNN+MRN for piracy software detection

Figure 8 shows that the presented HTFDNN+MRN
outperforms existing SVM and tensor flow based
techniques with 98.24% detection accuracy for 1000 byte
packets. Thus, the HTFDNN+MRN outperforms existing
algorithms in terms of detecting results with high accuracy.
The suggested learning techniques are robust to training
data noise and thus achieve better accuracy rates while
avoiding local optima. These results confirm that the
described technique can recognize piracy software more
effectively and reliably.

Conclusion

 The key obstacles in cybersecurity using IoT-
based big data are detecting software piracy and malware
threats. We present a hybrid Tensor flow DNN with
modified Residual Network approach for detecting pirated
and malicious files. First, a Tensor Flow neural network is
presented to recognize software plagiarism. To test the
proposed approach, 100 GCJ programmers' source code
files were collected. Code sources are pre-processed by
eliminating noises and capturing useful tokens. Feature’s
contributions are assigned weights based on TFIDF and
LogTF weighting strategies. The weighting values are then
fed into the deep learning algorithm. To detect malware
using IoT, a novel hybrid approach and colour image
visualisation methodology is proposed. Current SVM and
tensor flow based software piracy detection techniques are
outperformed by 98%. The HTFDNN+MRN technique has

98.14 %, Tensor flow has 97.46 %, and SVM has 85.71 %
when the image ratio is 229*229. Based on the test findings,
the presented scheme is superior to other techniques in
distinguishing malware variants of related families. The
visual characteristics of malware are critical to future
malware classification performance. Exploit entropy
feature extraction and present reliable malware
classification techniques.

REFERENCES
[1] Feng, S., Xiong, Z., Niyato, D., Wang, P., Wang, S. S., &

Zhang, Y. (2018, December). Cyber risk management with
risk aware cyber-insurance in blockchain networks. In 2018
IEEE Global Communications Conference (GLOBECOM)
(pp. 1-7). IEEE.

[2] Ma, X., Guo, S., Li, H., Pan, Z., Qiu, J., Ding, Y., & Chen, F.
(2019). How to make attention mechanisms more practical in
malware classification. IEEE Access, 7, 155270-155280.

[3] Bozkir, A. S., Cankaya, A. O., & Aydos, M. (2019, April).
Utilization and comparision of convolutional neural networks
in malware recognition. In 2019 27th Signal Processing and
Communications Applications Conference (SIU) (pp. 1-4).
IEEE.

[4] Sriram, S., Vinayakumar, R., Sowmya, V., Alazab, M., &
Soman, K. P. (2020, July). Multi-scale learning based
malware variant detection using spatial pyramid pooling
network. In IEEE INFOCOM 2020-IEEE Conference on
Computer Communications Workshops (INFOCOM
WKSHPS) (pp. 740-745). IEEE.

[5] Gupta, G. P., & Kulariya, M. (2016). A framework for fast
and efficient cyber security network intrusion detection using
apache spark. Procedia Computer Science, 93, 824-831.

[6] Li, J. H. (2018). Cyber security meets artificial intelligence:
a survey. Frontiers of Information Technology & Electronic
Engineering, 19(12), 1462-1474.

[7] Sabar, N. R., Yi, X., & Song, A. (2018). A bi-objective hyper-
heuristic support vector machines for big data cyber-security.
Ieee Access, 6, 10421-10431.

[8] Cronin, G. (2002). A taxonomy of methods for software
piracy prevention. Department of Computer Science,
University of Auckland, New Zealand, Tech. Rep.

[9] Djekic, P., & Loebbecke, C. (2005, July). Software piracy
prevention through digital rights management systems. In
Seventh IEEE International Conference on E-Commerce
Technology (CEC'05) (pp. 504-507). IEEE.

[10] Mishra, B. K., Raghu, T. S., & Prasad, A. (2005). Strategic
analysis of corporate software piracy prevention and
detection. Journal of Organizational Computing and
Electronic Commerce, 15(3), 223-252.

[11] Sharma, V. K., Rizvi, S. A. M., & Hussain, S. Z. (2010).
Distributed Co-ordinator Model for Optimal Utilization of
Software and Piracy Prevention. International Journal of
Computer Science and Security (IJCSS), 3(6), 550.

[12] Musman, S., & Turner, A. (2018). A game theoretic approach
to cyber security risk management. The Journal of Defense
Modeling and Simulation, 15(2), 127-146.

[13] Fielder, A., Panaousis, E., Malacaria, P., Hankin, C., &
Smeraldi, F. (2016). Decision support approaches for cyber
security investment. Decision support systems, 86, 13-23.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.10, October 2022

245

[14] Feng, S., Wang, W., Xiong, Z., Niyato, D., Wang, P., &
Wang, S. S. (2018). On cyber risk management of blockchain
networks: A game theoretic approach. arXiv preprint
arXiv:1804.10412.

[15] Dhamal, S., Ben-Ameur, W., Chahed, T., Altman, E., Sunny,
A., & Poojary, S. (2018). A stochastic game framework for
analyzing computational investment strategies in distributed
computing. arXiv preprint arXiv:1809.03143.

[16] Kim, S. (2016). Group bargaining based bitcoin mining
scheme using incentive payment process. Transactions on
Emerging Telecommunications Technologies, 27(11), 1486-
1495.

[17] Shomer, A. (2014). On the Phase Space of Block-Hiding
Strategies. IACR Cryptol. ePrint Arch., 2014, 139.

[18] Grover, M., Sharma, N., Bhushan, B., Kaushik, I., &
Khamparia, A. (2020). Malware Threat Analysis of IoT
Devices Using Deep Learning Neural Network
Methodologies. In Security and Trust Issues in Internet of
Things (pp. 123-143). CRC Press.

[19] Naeem, H. (2019). Detection of malicious activities in
internet of things environment based on binary visualization
and machine intelligence. Wireless Personal
Communications, 108(4), 2609-2629.

[20] Aslan, Ö., & YILMAZ, A. A. (2021). A New Malware
Classification Framework Based on Deep Learning
Algorithms. IEEE Access.

[21] Bozkir, A. S., Cankaya, A. O., & Aydos, M. (2019, April).
Utilization and comparision of convolutional neural networks
in malware recognition. In 2019 27th Signal Processing and
Communications Applications Conference (SIU) (pp. 1-4).
IEEE.

[22] Ullah, F., Naeem, H., Jabbar, S., Khalid, S., Latif, M. A., Al-
Turjman, F., & Mostarda, L. (2019). Cyber security threats
detection in internet of things using deep learning approach.
IEEE Access, 7, 124379-124389.

[23] Bandara, U., & Wijayrathna, G. (2012). Detection of source
code plagiarism using machine learning approach. Int J
Comput Theory Eng, 4(5), 674.

[24] Haddi, E., Liu, X., & Shi, Y. (2013). The role of text pre-
processing in sentiment analysis. Procedia Computer Science,
17, 26-32.

[25] Liu, M., Shi, J., Li, Z., Li, C., Zhu, J., & Liu, S. (2016).
Towards better analysis of deep convolutional neural
networks. IEEE transactions on visualization and computer
graphics, 23(1), 91-100.

[26] Hanif, M. S., & Bilal, M. (2020). Competitive residual neural
network for image classification. ICT Express, 6(1), 28-37.

Abdulrahman Mohammed
Alshehri is a Saudi MAWHIBA
alumnus and a merit scholarship
student recipient at Riyadh
Schools. He is a Certified Ethical
Hacker (CEH). Additionally, he
has completed over ten certified
courses, participated in numerous
internships and clubs, and done
volunteer and innovative work,
such as his Telegram initiative

channel. Furthermore, he is working on a personal Saudi cultural
website whose goal is to have an impact worldwide. With all of
this stated, he is enthusiastic about achieving the Kingdom's 2030
vision. His research interests include cybersecurity and
technology.

Mohammed Saeed Fenais, a
student at Riyadh Schools, has
been presented with a
distinction award in
recognition of his
outstanding academic
achievement. He has more
than 1000 hours in Olympiad
training for competitive

programming using C++ while maintaining a perfect grade
point average at school. Furthermore, he is a MISK and
Mawhiba alumnus. It is impossible not to get swept up in
his contagious enthusiasm for bringing the Kingdom's
vision for the year 2030 to fruition. His research interests
include the development of new technology as well as the
investigation of ways to keep computers secure..

