• Title/Summary/Keyword: curvature equation

Search Result 263, Processing Time 0.025 seconds

THE EINSTEIN-KÄHLER METRICS ON HUA DOMAIN

  • Wang, An;Yin, Weiping
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.4
    • /
    • pp.609-627
    • /
    • 2003
  • In this paper we describe the Einstein-Kahler metric for the Cartan-Hartogs of the first type which is the special case of the Hua domains. Firstly, we reduce the Monge-Ampere equation for the metric to an ordinary differential equation in the auxiliary function X = X(z, w) = $\midw\mid^2[det(I-ZZ^{T}]^{\frac{1}{K}}$ (see below). This differential equation can be solved to give an implicit function in Χ. Secondly, we get the estimate of the holomorphic section curvature under the complete Einstein-K$\ddot{a}$hler metric on this domain.

Stability Evaluation & Determination of Critical Buckling Load for Non-Linear Elastic Composite Column (비선형 탄성 복합재료 기둥의 임계 좌굴하중 계산 및 안정성 평가)

  • 주기호;정재호;강태진
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.215-219
    • /
    • 2003
  • Buckling and post-buckling Analysis of Ludwick type and modified Ludwick type elastic materials was carried out. Because the constitutive equation, or stress-strain relationship is different from that of linear elastic one, a new governing equation was derived and solved by $4^{th}$ order Runge-Kutta method. Considered as a special case of combined loading, the buckling under both point and distributed load was selected and researched. The final solution takes distinguished behavior whether the constitutive relation is chosen to be modified or non-modified Ludwick type as well as linear or non-linear. We also derived strain energy function for non-linear elastic constitutive relationship. By doing so, we calculated the criterion function which estimates the stability of the equilibrium solutions and determines critical buckling load for non-linear cases. We applied this theory to the constitutive relationship of fabric, which also is the non-linear equation between the applied moment and curvature. This results has both technical and mathematical significance.

  • PDF

Electromagnetic Behavior of High -$T_c$ Superconductors underthequenchstate -

  • 정동철;최효상;황종선;윤기웅;한병성
    • Progress in Superconductivity
    • /
    • v.3 no.2
    • /
    • pp.183-187
    • /
    • 2002
  • In this paper we analyzed the electromagnetic behavior of high $-T_{c}$ superconductor under the quench state using finite element method. Poisson equation was used in finite element analysis as a governing equation and was solved using algebra equation using Gallerkin method. We first investigate d the electromagnetic behavior of U-type superconductor. Finally we applied our analysis techniques to 5.5 kVA meander-line superconducting fault current limiters (SFCL) which are currently developed by many power-system researcher in the world. Meshes of 14,600 elements were used in analysis of this SFCL. Analysis results show that the distribution of current density was concentrated to inner curvature in meander-line type-superconductors and maximum current density 14.61 $A/\m^2$ and also maximum Joule heat was 6,420 W/㎥. We concluded that this meander line-type SFCL was not pertinet fur uniform electromagnetic field distribution.n.

  • PDF

Chaotic Out-of-Plane Vibration of Curved Pipe Conveying Oscillatory Flow (조화진동유동을 포함한 곡선파이프계의 외평면 혼돈 운동 연구)

  • 홍성철
    • Journal of KSNVE
    • /
    • v.10 no.5
    • /
    • pp.849-858
    • /
    • 2000
  • In this paper the chaotic out-of-plane vibrations of the uniformly curved pipe with pulsating flow are theoretically investigated. The derived equations of motion contain the effects of nonlinear curvature and torsional coupling. The corresponding nonlinear ordinary differential equation is a type of nonhomogenous Hill's equation . this is transformed into the averaged equation by averaging theorem. Bifurcation curves of chaotic motion are obtained by Melnikov's method and plotted in several cases of frequency ratios. The theoretically obtained results are demonstrated by numerical simulation. And strange attractors are shown.

  • PDF

A Study on the Dynamic Analysis of Railway Vehicle by Using Track Coordinate System (트랙좌표계를 이용한 철도차량의 동역학 해석에 관한 연구)

  • Kang, Juseok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.122-130
    • /
    • 2013
  • Rail geometries such as cant, grade and curvature can be easily represented by means of a track coordinate system. In this analysis, in order to derive a dynamic and constraint equation of a wheelset, the track coordinate system is used as an intermediate stage. Dynamic and constraint equations of railway vehicle bodies except the wheelset are written in the Cartesian coordinate system as a conventional method. Therefore, whole dynamic equations of a railway vehicle are derived by combining wheelset dynamic equations and dynamic equations of railway vehicle bodies. Constraint equations and constraint Jacobians are newly derived for the track coordinate system. A process for numerical analysis is suggested for the derived dynamic and constraint equations of a railway vehicle. The proposed dynamic analysis of a railway vehicle is validated by comparison against results obtained from VI-RAIL analysis.

SINGULAR MINIMAL TRANSLATION GRAPHS IN EUCLIDEAN SPACES

  • Aydin, Muhittin Evren;Erdur, Ayla;Ergut, Mahmut
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.1
    • /
    • pp.109-122
    • /
    • 2021
  • In this paper, we consider the problem of finding the hypersurface Mn in the Euclidean (n + 1)-space ℝn+1 that satisfies an equation of mean curvature type, called singular minimal hypersurface equation. Such an equation physically characterizes the surfaces in the upper half-space ℝ+3 (u) with lowest gravity center, for a fixed unit vector u ∈ ℝ3. We first state that a singular minimal cylinder Mn in ℝn+1 is either a hyperplane or a α-catenary cylinder. It is also shown that this result remains true when Mn is a translation hypersurface and u is a horizantal vector. As a further application, we prove that a singular minimal translation graph in ℝ3 of the form z = f(x) + g(y + cx), c ∈ ℝ - {0}, with respect to a certain horizantal vector u is either a plane or a α-catenary cylinder.

Analysis of Axial Load Characteristics of Air-Dynamic Bearings of Various Curvatures (다양한 곡률을 가진 공기 동압 베어링의 축방향 부하특성 해석)

  • 최우천;신용호;최정환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.3
    • /
    • pp.129-135
    • /
    • 2000
  • Air-dynamic bearings are increasingly used in supporting small high-speed rotating bodies. This study investigates the effects of design parameters on the axial stiffness of spiral-grooved air bearings of various curvatures. Design parameters are fundamental clearance, groove depth, and bearing number. The pressure distribution at the clearance between the stator and rotor of the bearing is obtained by solving the Reynolds equation, and the supporting load and the axial linear stiffness are calculated from the pressure distribution. It is found that a larger curvature increases the axial linear stiffness more and that there exist an optimal groove depth for the linear stiffness of the air bearing. It is also found that the linear stiffness has a linear relationship with the bearing number.

  • PDF

Deterioration of Structural Capacity of Fire-Damaged Reinforced Concrete Column (화해를 입은 철근콘크리트 기둥의 구조성능 저하)

  • 이차돈;신영수;홍성걸;이승환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.371-374
    • /
    • 2003
  • The degree of changes in mechanical properties of fire-damaged reinforced concrete column depends mostly on sectional geometry, duration exposed to fire, and moisture containment. In order to reasonably assess the deterioration of structural capacity of fire-damaged reinforced concrete column, it is necessary to develop a theoretical model predicting column behavior based on nonlinear heat transfer equation in addition to the traditional mechanics. This research focuses on the development of theoretical model to predict moment-curvature relations of fire-damaged reinforced column. The model is used for the assessment of structural capacity of fire-damaged column in terms of moment-curvature relations and PM interaction curves.

  • PDF

Numerical study on the two-dimensional stepped wall jet (단이 진 2차원 벽면분류에 대한 수치 해석)

  • 윤순현;엄윤섭;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.865-875
    • /
    • 1988
  • A two-dimensional stepped wall jet was numerically investigated by applying three different models : One is the standard k-.epsilon. and the other is the modified k-.epsilon. model which takes account of the streamline curvature effect by modifying the Reynolds shear stress and a source term in the dissipation equation, and a third is curvature dependent third-order correlation model. In order to test the influences of the numerical result, both the upwind scheme and the skew-upwind scheme were sued for the computations. By comparing the numerical results with available experiments, it was found that the modified k-.epsilon. model gives best overall prediction accuracy only when the numerical diffusion is eliminated by using the skew-upwind scheme. The numerical scheme was found to have more pronounced effect on the accuracy of the turbulence computation than the turbulence models.

Blending Surface Modelling Using Sixth Order PDEs

  • You, L.H.;Zhang, Jian J.
    • International Journal of CAD/CAM
    • /
    • v.6 no.1
    • /
    • pp.157-166
    • /
    • 2006
  • In order to model blending surfaces with curvature continuity, in this paper we apply sixth order partial differential equations (PDEs), which are solved with a composite power series based method. The proposed composite power series based approach meets boundary conditions exactly, minimises the errors of the PDEs, and creates almost as accurate blending surfaces as those from the closed form solution that is the most accurate but achievable only for some simple blending problems. Since only a few unknown constants are involved, the proposed method is comparable with the closed form solution in terms of computational efficiency. Moreover, it can be used to construct 3- or 4-sided patches through the satisfaction of continuities along all edges of the patches. Therefore, the developed method is simpler and more efficient than numerical methods, more powerful than the analytical methods, and can be implemented into an effective tool for the generation and manipulation of complex free-form surfaces.