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Abstract 一 In order to model blending surfaces with curvature continuity, in this paper we apply sixth order partial differential 
equations (PDEs), which are solved with a composite power series based method. The proposed composite power series based 
approach meets boundary conditions exactly, minimises the errors of the PDEs, and creates almost as accurate blending 
surfaces as those from the closed form solution that is the most accurate but achievable only for some simple blending 
problems. Since only a few unknown constants are involved, the proposed method is comparable with the closed form solution 
in terms of computational efficiency. Moreover, it can be used to construct 3- or 4-sided patches through the satisfaction of 
continuities along all edges of the patches. Therefore, the developed method is simpler and more efficient than numerical 
methods, more powerful than the analytical methods, and can be implemented into an effective tool for the generation and 
manipulation of complex free-form surfaces.

Keywords: Curvature continuity surface blending, Sixth order partial differential equation, Composite power series solution, 
Weighted residual method

1. Introduction

Blending surfaces are widely used in product design. 
In general, two kinds of blending surfaces are commonly 
니sefhl: those with tangent and curvature continuities. 
Although tangent continuity is sufficient for many 
cases, the ability to satisfy a higher degree of smoothness 
requirement is essential for various situations. For 
instance, streamlined surfaces of an automobile are 
aesthetically appealing and those of an aircraft with 
curvature continuity can reduce the risk of flow 
separation and turbulence.

Blending with curvature continuity has been investi
gated by a number of researchers. Boehm proposed a 
method to generate curvature continuous curves and 
surfaces by generalizing the well-known construction 
of the Bezier points of a cubic spline curve or surface 
[3]. Jones decomposed an 77-sided region into n 
rectangles and indicated that the rectangular patches 
are biseptic for curvature continuity [15]. Farin 
discussed how to construct curvature continuous planar 
curves consisting of conic segments represented in 
rational Bezier form [10]. Pegna demonstrated the 
design of second order smooth blending surfaces by 
requiring that normal curvatures agree along all tangent 
directions at the linl<age curve of two patches [21]. By 
sweeping a (possi미y variable) circular arc to represent 
blending surfaces, he gave a method which can 
g니arantee continuity of the unit surface normal and of
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the normal radi니s of curvature along the linkage curve 
[22]. Later on, he and Wolter presented a Linkage 
Curve theorem that is pertaining to the design of 
curvat나re continuous blending surfaces [23]. Zheng et 
al. investigated the curvature contin니ity between two 
adjacent rational Bezier surfaces which may be either 
rectangular or triangular [36]. Filkins et al. used an 
approximation method to blend surfaces which 
maintain curvature continuity to the underlying surfaces 
with a non-uniform rational B-spline (NURBS) surface 
[11]. Schichtel presented a technique for filling polygonal 
holes using a transfinite interpolant. This technic[니e is to 
model the second-order smooth transitions at an arbitrary 
linkage curve between two surfaces [25]. Aumann 
proposed the so-called normal ringed surfaces to form 
curvature continuous connections of cones and/or 
cylinders [1]. Hartmann blended an implicit surface 
with a parametric surface and achieved G흐-continuous 
transitions through introduction of a simple additional 
condition [12]. In his later work, he introduced a 
method for curvature-continuous (G2) interpolation of 
an arbitrary sequence of points on a surface (implicit or 
parametric) which can be used for G1 blending of 
curves on s나rf让ces [13]. Recently, Hartmann proposed 
the implicit Gn vertex blending methods which can be 
applied to other surfaces such as parametrically defined 
s니rf代ces [14]. By defining curvature contin니。니s splines 
based on 3-sided patches, Peters discussed how to 
construct smooth surfaces over irregular meshes [24]. 
Ye developed the Gaussian and mean curvature criteria 
which individually guarantee the curvature continuity 
along the linkage curve [27]. He also introduced a 
method for local construction of a curvature continuous 
(GC2) piecewise polynomial surface through the inter

http://www.ijcc.org


158 International Journal of CAD/CAM Vol. 6, No. 1, pp. 157-166

polation of a given rectangular curvat나re contin니。나s 
quintic curve mesh [28]. Bohl and Reif discussed 
conditions how degenerate triangular Bezier patches 
guarantee curvature continuity [4]. Kim et al. demon
strated how to extend a given surface with a piecewise 
smooth bo니ndary and indicated the extended surface is 
C존-continuity along the old bo니ndary [16].

Blending surfaces can also be created using the 
sol니tions to PDEs, which has attracted an increasing 
amount of research efforts. Compared with other more 
mainstream approaches, this group of techniques prove 
very flexible in dealing with certain unus니al blending 
problems in addition to the 'ordinary' ones. For 
example, it can easily blend an open surface with a 
closed one (Fig. 6) and can also blend s니雨ces with 
creases. This would otherwise be extremely challenging 
fbr other techniques.

PDE surface generation is a relatively new research 
topic in geometric modelling, however has already 
shown a great deal of potential. Bloor and Wilson 
investigated free-form surface generation with partial 
differential equations [2]. Lowe et al, created blending 
s니rf知ces that satisfy certain given design conditions 
[18], Dekanski et al. applied PDE method in generation 
of a properller blade geometry [7]. Du and Qin 
developed a technique for direct manipulation and 
interactive sculpting based on PDE and equation of 
motion [8]. They also considered geometric and physical 
constraints in dynamic PDE-based s니刑沃 design [9]. 
Mimis et al. discussed shape parameterization of a two- 
stroke engine and optimization of scavenging properties 
of the engine [19]. Zhang and You applied PDE based 
approach in vase design [33] and surface blending [34]. 
Ugail and Wilson combined shape parametrisation with 
a standard method of numerical optimization and 
demonstrated the capability of setting up automatic 
design optimisation problems [26]. You and Zhang 
extended PDE surface modelling from static problems 
to dynamic ones [31]. Monterde and Ugail proposed a 
general PDE method to create Bezier surfaces from the 
boundary information [20]. These papers and many 
others employed a fourth order partial differential 
equation. Since the vector-valued parameter has a 
strong infhaence on the shape of the blending surfaces 
to be 잉enerated, an improved fourth order PDE was 
proposed by You and Zhang [29]. In this new PDE, 
three vector-val니ed parameters were introduced aiming 
to provide the designer with more control and flexi
bility on the created blending surfaces. However, these 
PDEs can only ensure the functional and tangential 
continuities at the linkage curves, i.e. the highest 
continuity is C1. This is because a fourth order PDE 
will not have enough degrees of freedom to satisfy 
curvature continuity requirements. In order to remedy 
this issue, sixth order partial differential equations were 
proposed by You et al. [32], Zhang and You [35], and 
Kubiesa et al. [17].

An important question to be answered fbr the PDE 
based approach, however, is how to solve the partial 
differential equations efficiently and accurately. From 
the properties of PEDs, one can 나nderstand that closed 
form solutions do not exist fbr the majority of surface 
blending problems. Numerical methods s니ch as the 
finite element method [5] and finite difference method 
[6] are 나sually the most obvious choice. However, due 
to the nature of discretization, these reported numerical 
methods cannot exactly satisfy the boundary conditions 
of the blending problems which is a minimum 
requirement for surface blending. Moreover, these 
methods usually involve a large number of 니nknowns 
which result in the resolution of a large set of linear 
algebra equations. It is therefore very time-consuming. 
This disadvantage in many cases has significantly 
hampered the use of the PDE based techniques, 
especially in situations where interactivity is required, 
s니ch as real time graphics applications. In order to 
create surfaces quickly, we will propose a resol나tion 
method for solving sixth order PDEs. This solution is 
an extension of the work presented in [34] where only 
a fourth order PDE was involved. This method makes 
use of the composite power series expansion to 
approximate the blending surfeces. The basic features 
of o니!' method are that it can satisfy boundary 
conditions exactly and minimize the error of the sixth 
order PDEs effectively. Since only a very small number 
of collocation points and unknown constants are 
involved, the proposed method is not only accurate, but 
also computationally very efficient.

2. Composite power series solutions of sixth 
order partial differential equations

Considering the efiect of the vector-vahied parameters 
on the shape of the blending surfaces, we use the 
following sixth order partial differential equations to 
produce curvature continuous blending surfaces

where a = [ax ay az]\ b = [bx by 妇〈c = [cx cy cz]T,d = [dx 
dy are vector-valued shape control parameters, 
x = [匸卩 긔' represents a vector-valued position function 
and u, v are the parametric variables.

Next, we will define the boundary conditions. 
According to [23], curvature contin나ity across the 
linkage curve is achieved when the second fundamental 
tensors of the two connected patches are identical at all 
points of the linkage curve. That gives,

(Ldn2 + IMdudv + Ndv1)^. = (Ldir + 2Mdudv + Wv2)_
(2)

where subscripts and "一” denote two adjacent 
surface patches, respectively.
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Since du and dv are the differentials of two arbitrary
parametric variables, Eqn (2) is equivalent to the 
following ones

L+=L_ M+ = M_

where

N*=N_ (3)

L = nruu N=nrm 

and

n = [〃i n2 n3]T

^Uli ~ \^UU yUU

r"v = [x时 yuv z"v]

rvv = [xvv yvv zvv]T

N=nrvv (4)

(5)

Since the normal n will be shared by both surfaces, 
Eqn (3) will definitely be satisfied, if the following 
conditions hold,

(x“")+ = (x“")_ 

(%)+=(X"v)_ 

(Xw)+ =(X”，)_

—uu)~ (z"")+-(Z"“)_ 

3时)+=(皿)一(z"v)+=(z“v)_ 

3w)+ = (*，v)-(Zw)+ =(Z")_

(6)

Therefore, the boundary conditions for surface 
blending with up to curvature continuities will include 
position and tangent contin니ity conditions as well as Eqn 
(6). Thus the bo니ndary conditions can be written as

for u = 0, x=G](v) x„ = G2(v) x„„ = G3(v) 

x"G2‘(v) x@ = G['(")

⑺ 
for w=l, x=G4(v) x„ = G5(v) x„„ = G6(v)

x"v = G5，(v) Xvv=G4，，(V)

After the above treatment, a blending surface x(w, v) 
with curvature contin니ity can be created with the 
solution to PDE (1) subject to boundary conditions (7).

Clearly, the closed form solution of PDE (1) under 
boundaiy conditions (7) does not exist fbr general 
cases. Here we use the same methodology which we 
developed in [34] to find the approximate analytical 
solution. In order to simplify the solving process for 
PDE (1), we firstly define a linearly independent basic 
function as those consisting of constant 1, the parametric 
variable v, its various elementary functions excluding 
polynomials, and their combinations not in a polynomial 
form. Then, we can write the following linearly 
independent basic functions from the boundary 
conditions (7),

gz(v) (了=0,1,2,...,/) for x componenet

hj(y) (/=0,l,2키..,J) fory componenet (8)

sk(v) (k=0,l,2,...,K) for z componenet

With the above preparation, we propose to approxi
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mate the blending surface, i.e. the solution of Eqn (1) 
s니切ect to boundary conditions (7) with the same 
composite power series expansion used in [34] whose 
form is given by

/ I Mxi
x(",v) = £x0,v) = £ 

i=0 m^O 
J J My.i

如,v)=D/("，v)=Z 

丿=0 j-0
K K 、

z(")=Z水",v)=Z ”0”力(v)

스。 스。스。 (9)

where Mxh Myj, Mzk represent the numbers of the terms 
of the power series taken for the 无,力,z比 components, 
respectively.

If a linearly independent basic function of the 
boundary conditions (7) is 1, say for example g;-(v) = 1, 
the corresponding exponent m takes values from 0 to 5, 
because these 6 unknown constants can be uniquely 
determined by the boundary conditions given in Eqn 
(10).

Taking the x component as an example, referring to 
Eqn (9), the bo니ndary conditions fbr 払 v) can be 
written as

(，=0,l,2,3".,/) (10)

dx- d2X-
"=0 = 그 —=^,2&(V) 

du
d2x； 、

只一打- 드 dudv
r = Sg,"(v) 
dv2

U=\ 也=%3&(") 京=F)
g2r.
—S = %5&(V) 
du

52x- d2x； " /、
泊心)
dudv

—~ = ai3gi(V) 
3v-

Substituting x仞,v) of Eqn (9) into Eqn (10), we find 

that 으오 = q ,(y)and —prod니ce the same 
dudv " ' 。허

d^Xj
equation, and so do —r = <3/0^/，(v) and x, = 0()幻(卩). 

dv

泓. 02x.
Therefore, bo니ndary conditions ----- - and ——- in Eqn

dudv 而

(10) for both 이 = 0 and w 1 are redundant.
Similar to the treatment given in [34], we can now 

solve Eqn (10) for the unknown constants pjm (m = 
0,12…,5). They are given by

0o = 시沁

P기
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/¥ = 0.5%

海=-10知-6q.[-IM/lOcS—4%・4+0.5%5

-£ (0.5/772-4.5m+10)p血 

m-6

Pi4= 15a;o+8«/i + 1.5ai2-l5ai3+7ai4-aiS
a妇 (11)

~^(m2-8rn+15)pim

m = 6

pi5=-6ajQ-3ai]-0.5aj2+6ai3-3aj4-\-0.5ai5

-0.5^(m2-7m+12>；m
m-6

Here qJ〃=O, 1,2,...,5) are known constants. Repla
cing p沥(“？=°，1，2,…,5) of Xj(u, v) in the first expre
ssion of Eqn (9) with Eqn (11), one obtains the foll
owing x component that satisfies boundary conditions 
(10) exactly

/
x = Z {(1 一 1 Ow3+15w4-6w5)6t/0+(w-6w34-8w4-3w5)<7zl 

f=0
+ 0.5(w2-3w3+3w4-w5)^z2+(10w3-15z/4+6w5)£7z3

十(—4z广一 7z/‘+3〃5)q4+(0.5z『一zU+0.5"5)q5

+ £ [_(0.5z?72-4.5m+ 10)w3+(w2-8m+15)z/4 

m = 6

-0.5(m-~7m+12)u +um]pim}gi(v) (12)

Since Eqn (9) is an approximate solution of Eqn (1) 
under boundary conditions (7), Eqn (1) is not accurately 
satisfied by substituting Eqn (9) into (1). The error can 
be described with a residual function (error function). 
Still taking the x component as an example, its residual 
function can be formulated by

R(%v)=£ +시 (13)
F=0 様=6

where Uim and A{ can be written as

Uim = m(m-\ )(m-2)(rn-3)(m-4)(m-5)(7Ji/m~6g;(v)

+[24(m2-87w+15)-60(m2-7m+12)u+m(m-1)

(初一 2)("?-3)/i 也ggg羿니-6(0.5”?2—4.5m+10)〃

dv

+ 12(w2-8w+1 5)w2-1 0(m2-7m+12)u +m(m-1 )z/w~2]

cx—^q-^+[_(0-5w2-4.5w+ 10)w3+(w2-8m+ 15)z/4 

dv

一0.5彼—"汁⑵/侦窿号羿 (14)

and

4 = 24[(15。,()+&% +1.502-1503+704-05)

+5(-6a/0-3(7/|-0.5(7p+6o/3-3d,(4+0.5<7/5)u]^^^^

~ dv

+2[0.502+3(시00()-60]-1.5%+1(03-404+0.505)"

+6( 15<3;0+8a/] +1.5(2,2-15a,■3+76,,.4+6t,-5)w2+ 10(-6a/0

- 3%] - 0.502+603-304+0.5%)/杞£&(!，)

dv

+ [<7/()+^] w + 0.5(7,2W2 + (-10t7,0-6(7/1-1.5(7,2+10(7,3

-4<3/3 + 0.5fl/5)WJ + (15fl/() + 8<7j| + 1.5(3；2-15i7/3 + 7a,4-(7j5)l/4

+(—600—3q〔—0.5《*+603—3(以+0.505)片]辺—幻?)]

~ dv \ (15)

Assuming that the blending region is defined by 
Uq<u<U\ and vQ<v< choosing N collocation points 
in this region and substituting the values of u and v at 
these collocation points into Eqn (13), the residual 
vahies R(um v„) (n= 1,2,.../V) at these collocation points 
can be computed by [30]

R = AC —B (16)

where R, C and B are TV x 1 arrays consisting of the 
resid니al values, unknown constants and constant terms,

respectively, and A is a Nx'^(MXI—5') matrix consis- 
i=o

ting of the coefficients of the unknown constants pim 
(i = 0,1,2,..., l;m = 6,7,...,A為).

The sq니ared sum of the resid니al values of Eqn (16) is

I = R『R (17)

And the blending s니rf咨ce minimising the error of PDE 
(1) can be determined by

暮=。 (18)

which leads to the following set of linear algebraic 
equations

ArAC = ArB (19)

1
Eqn (19) contains unknown constants.

r=o

Solving these linear algebra equations determines all 
the unknown constants of the x component. The y and z 
components can be obtained similarly.

3. Accuracy and computational efficiency

In this section we will examine the accuracy and 
computational efficiency of the above-proposed com
posite power series method through two blending 
examples. The first is to blend a circular torus and an 
elliptic hyperboloid of one sheet and the second 
example is to blend an open surface and a plane. 
Altho니gh the first is straightforward, the second would 
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be very challenging for other blending techniques. 
From this point of view, one can also sense the 
versatility and powerfulness of the PDE based blending 
approach.

It is well known that the closed form solution of a 
PDE is the most accurate and efficient among all 
possible solutions. For the first example, the closed 
form solution of PDE (1) 니nder boundary conditions 
(20) is obtainable, if the vector-vahied shape control 
parameters are set to those presented below. We will 
solve PDE (1) using both the presented method and the 
closed form solution method, and compare the accuracy 
and computational efficiency of both approaches.

The boundary conditions for this blending example*
are

以 = 0 x = qco마— = 6rsinhw0cosv

y = /)coshw0sinv ^- = Z)sinhz/osinv

= Qcosh"()cosu

= /)coshw0sinv

z = /70+/?sinhw0 k =，cosh”() —；^/7sinhw0
du du~

u= 1 x = (R+4cos"i)cosv —^-^sinz/]COSv

j/ = (7?+J4cosz/|)sinv 弃=一』sin%sinv

^=Acosii[
ou

(20)

7
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From the boundary conditions, it can be seen that the 
linearly independent basic functions are cosv for the x 
component, sinv for the y component and 1 for the z 
component. Therefore, the solution of Eqn (1) takes the 
form of

X= Z，o〃0"cosv
m = 0

外。 m 
以尸 siiw

"2 = 0
5

z= Ze必
m = 0

(21)

Fig. 1. Blending between a circular torus and an elliptic hyper
boloid of one sheet.

parameters to be ax = bx = %，= by = 1 and cx = dx = cy= 
% = -l, the blending surface is obtained and depicted 
in Fig. la.

Substituting the same vector-valued shape control 
parameters into PDE (1), the sixth order parti이 

differential eq니ations for the x and y components of 
Eqn (1) become

Under the same bo나ndary conditions, the closed form 
solution of Eqn (22) exists which has the following 
form

x=K")cosv (23)

y = g(u)sinv

It should be pointed out that the closed form 
solutions of Eqn (1) under the same bo니ndary 
conditions for arbitrary values of the vector-valued 
parameters are 니sually not obtainable.

Introducing Eqn (23) into (22), we can obtain x andj 
components. The z component can be taken to be the 
third of Eqn (21) which satisfies the sixth order PDE of 
the z component. Therefore the closed form solution of 
Eqn (1) is

x= [(^i +c2w)en+(c3+c4w)e z/+c5cosw+c6sinw]cosv

y=[(dl+d2u)eu+(d3+d4u)e~ll+d5cosu+d6smu]smv

2 3 4 5
Z=，oo +尸 01” +, 02〃 +尸03이 +勺 4" +尸05〃 (24)

Using the method introduced in the previous section, 
we can determine all the unknown constants of Eqn 
(21). Let 니s evenly distribute 9 collocation points 
within the rectang니lar region of u and v, and take the 
mimbers of the power series terms of the x and y 
components to be MxQ = = 7. This means that there
are only 2 unknown constants in the solving equation 
(19) to be determined. When setting the vector-valued 

*Undefined symbols used in the examples throughout this 
paper are geometric parameters of the relevant example. 

where all the unknown constants can be determined by 
the bo니ndary conditions of this blending problems.

With Eqn (24), we generated the blending surface 
and depicted it in Fig. lb. Vis니ally, the images shown 
in both fig니res look identical.

Excellent agreement of the blending surfaces 
between the proposed composite power series method 
and closed form solution can be further demonstrated 
through a quantitative comparison. We use the 
Euclidean norm to measure the difference. Choosing lu 
and Iv points respectively in the x and y directions 
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within the blending region, the Euclidean norm can be 
written as

£ 提‘/)戏

i= 1 j= 1

비니 }2 (25)

where the x, y and z components without "〜"stand for 
the closed form solutions and those with "for the 
composite power series solutions.

Equation (25) is a measurement of the absolute errors 
between two surfaces. We can also use relative errors 
between two surfaces to measure the difference between 
the proposed composite power series solution and the 
closed form solution. The equation of the relative 
errors takes the form of

r 1 /“ 4
丘히出 Z £ { { 顷

U" 、•=]/=]

〜 2 ~ 2 2
+[y(*v/)-・y(给,V/)] + [z(纶,v/)-z(%,V/)] }

/{[x(", V/)T + 3(",.,盼]2+盼]2}[ (26)

Uniformly choosing 99 x 99 points within the blending 
region, i.e., IU = JV = 99, the Euclidean norm between 
these two blending surfaces is only £=6.111 x IO-3 
and the difference from Eqn (26) is E= 3.135 x IO-3. It 
s나ggests that with even a small number of collocation 
points and power series terms, the proposed composite 
power series method can generate blending surfaces 
almost as accurately as the closed form solution 
method. Considering how the method works, the 
reason is easy to comprehend: since the proposed 
composite power series method always satisfies the 
boundary conditions exactly up to the order of 
curvature continuity, the discrepancy at the interior 
region of the blending surface will have very limited 
effect both visually and functionally. Moreover, this 
discrepancy is further reduced by the least square 
minimisation, leaving almost no room fbr errors.

It is also worthy mentioning that the computing 
efficiency of the proposed method is m니ch higher than 
that of the other numerical methods such as the finite 
element method and the finite difference method. The 
finite element method, for example, uses a large 
number of elements or nodes to achieve reasonable 
accuracy, which involves with many unknowns. As a 
consequence, the resolution of the linear equations is 
inevitably time-consuming. The proposed method on 
the other hand, only needs to solve a small number of 
linear eq나ations. With the above-chosen number of the 
collocation points and power series terms, the resolu

tion process took less than 10-6 second for the proposed 
composite power series and closed form resolution 
methods on an ordinaiy PC. This is also true even if we 
chose 8 x 8 = 64 collocation points and Mxq = Mg = 9 
power series terms. Thus we can conclude that the 
proposed composite power series method can generate 
blending surfaces almost as accurately and fast as the 
이osed form solution method. The comp니tational 
efficiency is the same also fbr the problems whose 
closed form solutions do not exist, thus making many 
previously unsolvable problems solvable.

For the second example, the boundary conditions are 
given by

- 

- 

= 

%

泌 

业처

D x = 0.1 sin/7(0.1v+0.1) 

+ 1.1088sinv
—= -0.132sinv
OU

j^-0.9cosh0.3v
+ 1.1088cosv

学=—0.132cosu 
du

z 느）.5十負
dz _ -0.2 
瓦「e

1.6sinv —=1.6sinv 
du

y= 1,6cosv
並=1.6cosv 
du

z = 0.8 色=0 
du

o
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으
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The vector-val니ed parameters in Eqn (1) were taken to 
be q= 1, b=3护,q = 3/A dj=p6 (i = x,y,z) andp = 3. 
The image obtained from the proposed composite 
power series and closed form sol나tions were depicted 
in Figs. 2a and 2b, respectively. Again both methods 
produced identical images.

4. Influences of vector-valued shape control 
parameters on surface shapes

By 니sing different values of the vector-valued shape 
control parameters, the sol니tion to PDE (1) is changed 
which will lead to different surface shapes. In this 
section, we will use two examples to highlight their 
effects.

The first example is to blend a sphere and an 
ellipsoid. The boundary conditions fbr this blending 
task are given below
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A ”3 dx 1 d x
〃 =0 x = —rcosv —=—尸cosv ―； = rcosv

2 du 2 du2 2

尸鸟sinv
/ 2

票= —Lsinv 
du 2

1 z = -r
2

흐=虹
du 2

a2z
du2

1
2'
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Using the above described proced니re, the solution of 
Eqn (1) 니nder these boundary conditions takes the form 
of

1
2

쯔* c
du 2

S2z 1 
---- =__ Q
M 2 (28)

The sol나tion of Eqn (1) under these boundary condi
tions has the same form as that of Eqn (21). We will 
take 3x3 collocation points and 2 unknown constants. 
Initially, we set the vector-valued parameters to ax = bx 
=Cx = dx = %, = by = Cy = dy = I. The obtained blending 
surface is depicted in Fig. 3a. Then making cx = cv = 10 
and keeping all other parameters unchanged, we obtain 
the blending surface in Fig. 3b.

The second example is to blend a conical frustum 
with an elliptic cylinder. The boundary conditions for 
this blending task are taken as

z/ = 0 x^rwgcosv —= 2ru(icosv du 0

^ = 2rcosv 

du-

y — ru^vsinv dy .—rvsinv 
du

並=0

dll'

z = huQ
dz }—=h 
du

空=0

如2

5 WA-|
P" cosu

m = 0 m = 0

峋 My\
y= £ gom""vsinv+ £ qimumsmv

m=0

5 虬

尸饥히 +£ 尸cosy
用=。 紀) (30)

Using the proposed method, the unknown constants 
of Eqn (30) can be similarly determined. With the 
collocation points and the unknown constants 
unchanged, the blending s니rf代ce in Fig. 4a is obtained 
when all the vector-valued parameters are set to 1, and 
Fig. 4b created when parameters bx, by and bz are set to 
100 and the others are kept the same.

It is evident that the vector-valued shape control 
parameters in Eqn (1) have a strong influence on the 
shape of the blending surfaces. By changing their 
vahies, we can generate different surface shapes.

5. More complex examples

Two more complex examples of surface blending 
will be presented to demonstrate the strength of the 
proposed approach. The first is to blend two inter-

(a) (b)

Fig. 3・ Blending between a sphere and an ellipsoid.

fa) (b)

Fig. 4. Blending between a conical frustum and an elliptic 
cylinder.
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secting cylinders, whose PDE was solved only with the 
finite element method or finite difference method in 
existing literature, which is numerically expensive. The 
second example is to determine the transition surface 
between an open surface and a plane interpolating a 
specified curve.

For the blending between two intersecting cylinders, 
the boundary conditions at the linkage curves are as 
follows

!------ ；----- dz _ r+kt cfz _ 1
z = J(r玷)宀 (宀沪

〃 =0 x^scosv 冬0 
du

矿°

j/=5sinv 字=0 
du

空=0

du2

Fig. 5. Blending between two intersecting cylinders.
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(31)
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x=2|Sin/z(°2卩+皿)+°4(1 + " )sina5v

y = b}coshb2v^b3(\+u3)cosb4v (33)

z = c[+c2e11

Taking u = 0.2 in the above equation and specifying 
the curve on the plane to be blended, we can obtain the 
bo니ndary conditions of this blending task

According to these boundary conditions, we can 
obtain the linearly independent basic functions and 
construct the following composite power series 
solution of Eqn (1)

Ent
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On determining the unknown constants of the above 
equation, the blending surface generated is depicted in 
Fig. 5.

For the blending between an open surface and a 
plane at a specified curve, the parametric equation of 
the open s니!0ce are taken to be

The composite power series solution of Eqn (1) 
corresponding to the linearly independent basic 
functions in these boundary conditions can be taken to 
have the following form

X= 2，标""'血}1(。2叶%)+ ^plmumsina5v
m=Q m=0

+ £。3"”'血咛，+ ^p3mum sina9v
m=0 m=0

归v0 My\
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川=0 m = 0

Ms My3

+ X g3〃*"cosz，6v+ X g3〃,""'cos缶v
m=0 m=0
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Fig. 6. Blending between an open s니rfhce and a plane at a specified 
curve.

5
z=£wF (35)

也=0

Specifying the values of all the geometric parameters 
in the bo니ndary conditions and then determining all the 
unknown constants in Eqn (35) with the above proposed 
method, the blending surface obtained is given in Fig. 6.

6. Conclusions

By solving sixth order partial differential equations 
with fb니r vector-valued shape control parameters 
subject to blending bo니ndary conditions, we have 
presented a method for surface blending with up to 
curvat니re continuities. In comparison with our previous 
work [34], we are able to solve a higher order (sixth 
order) PDE as efficiently as a lower order one, and 
offer better smoothness.

Traditionally, PDE based methods are only appli
cable to a limited number of applications. This is due 
to the fact that the closed form solution of a PDE is 
either extremely difficult to obtain or does not exist. 
Existing numerical methods are computationally 
expensive. This is rather regrettable, as such methods 
do offer many advantages over other surface blending 
approaches. In order to overcome this limitation and 
make our proposed PDE approach practicable to a 
large number of blendin음 problems, we have developed 
an efficient and accurate resolution method using the 
composite power series expansion and the weighted 
residual technique. This method can satisfy the 
boundary conditions exactly and minimise the errors at 
the interior region of the s니HWce. With this method, the 
generated blending surface shares the exact position, 
tangent and curvature values with the primary surfaces 
at the linkage curves. Tt was fb나nd that this method has 
almost the same accuracy and computational efficiency 
as the closed form solutions.

The influences of the vector-valued shape control 

parameters on the shape of the blendin응 surfaces have 
also been examined. Their variations have a strong 
influence on the shape of the generated blending 
surfaces, and thus can be potentially exploited to serve 
as 니ser interface tools fbr shape manipulation.
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