DOI QR코드

DOI QR Code

SINGULAR MINIMAL TRANSLATION GRAPHS IN EUCLIDEAN SPACES

  • Received : 2019.12.18
  • Accepted : 2020.09.21
  • Published : 2021.01.01

Abstract

In this paper, we consider the problem of finding the hypersurface Mn in the Euclidean (n + 1)-space ℝn+1 that satisfies an equation of mean curvature type, called singular minimal hypersurface equation. Such an equation physically characterizes the surfaces in the upper half-space ℝ+3 (u) with lowest gravity center, for a fixed unit vector u ∈ ℝ3. We first state that a singular minimal cylinder Mn in ℝn+1 is either a hyperplane or a α-catenary cylinder. It is also shown that this result remains true when Mn is a translation hypersurface and u is a horizantal vector. As a further application, we prove that a singular minimal translation graph in ℝ3 of the form z = f(x) + g(y + cx), c ∈ ℝ - {0}, with respect to a certain horizantal vector u is either a plane or a α-catenary cylinder.

Keywords

References

  1. M. E. Aydin and A. Mihai, Translation hypersurfaces and Tzitzeica translation hypersurfaces of the Euclidean space, Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. 16 (2015), no. 4, 477-483.
  2. B.-Y. Chen, Geometry of Submanifolds, Marcel Dekker, Inc., New York, 1973.
  3. B.-Y. Chen, On some geometric properties of h-homogeneous production functions in microeconomics, Kragujevac J. Math. 35 (2011), no. 3, 343-357.
  4. B.-Y. Chen, Pseudo-Riemannian Geometry, δ-Invariants and Applications, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2011. https://doi.org/10.1142/9789814329644
  5. U. Dierkes, A Bernstein result for energy minimizing hypersurfaces, Calc. Var. Partial Differential Equations 1 (1993), no. 1, 37-54. https://doi.org/10.1007/BF02163263
  6. U. Dierkes, Singular minimal surfaces, in Geometric Analysis and Nonlinear Partial Differential Equations, 177-193, Springer, Berlin, 2003.
  7. F. Dillen, L. Verstraelen, and G. Zafindratafa, A generalization of the translation surfaces of Scherk, Diff. Geom. in honor of Radu Rosca (KUL) (1991), 107-109.
  8. W. Goemans and I. Van de Woestyne, Translation and homothetical lightlike hypersurfaces of a semi-Euclidean space, Kuwait J. Sci. Engrg. 38 (2011), no. 2A, 35-42.
  9. A. Gray, Modern differential Geometry of Curves and Surfaces with Mathematica, second edition, CRC Press, Boca Raton, FL, 1998.
  10. T. Hasanis, Translation surfaces with non-zero constant mean curvature in Euclidean space, J. Geom. 110 (2019), no. 2, Paper No. 20, 8 pp. https://doi.org/10.1007/s00022-019-0476-0
  11. T. Hasanis and R. Lopez, Translation surfaces in Euclidean space with constant Gaussian curvature, Arxiv 8 Sept 2018: https://arxiv.org/abs/1809.02758v1.
  12. T. Hasanis and R. Lopez, Classification and construction of minimal translation surfaces in Euclidean space, Results Math. 75 (2020), no. 1, Paper No. 2, 22 pp. https://doi.org/10.1007/s00025-019-1128-2
  13. S. D. Jung, H. Liu, and Y. Liu, Weingarten affine translation surfaces in Euclidean 3-space, Results Math. 72 (2017), no. 4, 1839-1848. https://doi.org/10.1007/s00025-017-0737-x
  14. B. P. Lima, N. L. Santos, and P. A. Sousa, Generalized translation hypersurfaces in Euclidean space, J. Math. Anal. Appl. 470 (2019), no. 2, 1129-1135. https://doi.org/10.1016/j.jmaa.2018.10.053
  15. H. Liu, Translation surfaces with constant mean curvature in 3-dimensional spaces, J. Geom. 64 (1999), no. 1-2, 141-149. https://doi.org/10.1007/BF01229219
  16. H. Liu and S. D. Jung, Affine translation surfaces with constant mean curvature in Euclidean 3-space, J. Geom. 108 (2017), no. 2, 423-428. https://doi.org/10.1007/s00022-016-0348-9
  17. H. Liu and Y. Yu, Affine translation surfaces in Euclidean 3-space, Proc. Japan Acad. Ser. A Math. Sci. 89 (2013), no. 9, 111-113. https://doi.org/10.3792/pjaa.89.111
  18. R. Lopez, Constant Mean Curvature Surfaces with Boundary, Springer Monographs in Mathematics, Springer, Heidelberg, 2013. https://doi.org/10.1007/978-3-642-39626-7
  19. R. Lopez, Separation of variables in equations of mean-curvature type, Proc. Roy. Soc. Edinburgh Sect. A 146 (2016), no. 5, 1017-1035. https://doi.org/10.1017/S0308210515000815
  20. R. Lopez, Invariant singular minimal surfaces, Ann. Global Anal. Geom. 53 (2018), no. 4, 521-541. https://doi.org/10.1007/s10455-017-9586-9
  21. R. Lopez, Compact singular minimal surfaces with boundary, Arxiv 27 Sep 2018: https://arxiv.org/abs/arXiv:1809.10741v1.
  22. R. Lopez, The one dimensional case of the singular minimal surfaces with density, Geom. Dedicata 200 (2019), 303-320. https://doi.org/10.1007/s10711-018-0372-z
  23. R. Lopez, The two-dimensional analogue of the Lorentzian catenary and the Dirichlet problem, Pacific J. Math. 305 (2020), no. 2, 693-719. https://doi.org/10.2140/pjm.2020.305.693
  24. R. Lopez and M. Moruz, Translation and homothetical surfaces in Euclidean space with constant curvature, J. Korean Math. Soc. 52 (2015), no. 3, 523-535. https://doi.org/10.4134/JKMS.2015.52.3.523
  25. M. Moruz and M. I. Munteanu, Minimal translation hypersurfaces in E4, J. Math. Anal. Appl. 439 (2016), no. 2, 798-812. https://doi.org/10.1016/j.jmaa.2016.02.077
  26. M. I. Munteanu, O. Palmas, and G. Ruiz-Hernandez, Minimal translation hypersurfaces in Euclidean space, Mediterr. J. Math. 13 (2016), no. 5, 2659-2676. https://doi.org/10.1007/s00009-015-0645-9
  27. K. Seo, Translation hypersurfaces with constant curvature in space forms, Osaka J. Math. 50 (2013), no. 3, 631-641. http://projecteuclid.org/euclid.ojm/1380287426
  28. G. Aydin Sekerci, S. Sevinc, and A. C. Coken, On the translation hypersurfaces with Gauss map G satisfying ∆G = AG, Miskolc Math. Notes 20 (2019), no. 2, 1215-1225. https://doi.org/10.18514/MMN.2019.3021
  29. B. van Brunt, The Calculus of Variations, Universitext, Springer-Verlag, New York, 2004. https://doi.org/10.1007/b97436
  30. D. Yang and Y. Fu, On affine translation surfaces in affine space, J. Math. Anal. Appl. 440 (2016), no. 2, 437-450. https://doi.org/10.1016/j.jmaa.2016.03.066
  31. D. Yang, J. Zhang, and Y. Fu, A note on minimal translation graphs in Euclidean space, Mathematics 7 (2019), no. 10, 889. https://doi.org/10.3390/math7100889
  32. D. W. Yoon and Z. K. Yuzbasi, Weighted minimal affine translation surfaces in Euclidean space with density, Int. J. Geom. Methods Mod. Phys. 15 (2018), no. 11, 1850196, 8 pp. https://doi.org/10.1142/S0219887818501967