• Title/Summary/Keyword: constant power

Search Result 2,851, Processing Time 0.03 seconds

A Study on the Maximum Energy Transfer of a Small Industrial Induction Heater (소형산업용 인덕션 히터의 최대에너지 전달에 관한 연구)

  • Lee, Jeong-Bin;Kim, Tae-Myoung;Kim, Young-Wan
    • Journal of IKEEE
    • /
    • v.25 no.3
    • /
    • pp.534-539
    • /
    • 2021
  • Induction heating method that allows the maximum heating power to be delivered by varying switching frequency in the inductance change of the work coil of induction heater was proposed in this paper. Depending on the type of work piece in the work coil and proximity to the work coil, the resonance frequency of the resonant circuit will be changed. It may be difficult to deliver the maximum power due to the damage of the induced heater element or switching loss depending on the resonance frequency and switching frequency operating relationship. The switching frequency was variable to maintain the maximum power transmission by sensing the heating power due to the change of the resonance frequency. Through the result of the proposed method that can be controlled within the required output change range according to the change of the switching frequency corresponding to the change of the resonance frequency, the induction heater having a variable switching frequency characteristic that can transmit almost constant output power (within 0.43 dB) power efficiency was achieved.

Approximate Multiplier with High Density, Low Power and High Speed using Efficient Partial Product Reduction (효율적인 부분 곱 감소를 이용한 고집적·저전력·고속 근사 곱셈기)

  • Seo, Ho-Sung;Kim, Dae-Ik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.671-678
    • /
    • 2022
  • Approximate computing is an computational technique that is acceptable degree of inaccurate results of accurate results. Approximate multiplication is one of the approximate computing methods for high-performance and low-power computing. In this paper, we propose a high-density, low-power, and high-speed approximate multiplier using approximate 4-2 compressor and improved full adder. The approximate multiplier with approximate 4-2 compressor consists of three regions of the exact, approximate and constant correction regions, and we compared them by adjusting the size of region by applying an efficient partial product reduction. The proposed approximate multiplier was designed with Verilog HDL and was analyzed for area, power and delay time using Synopsys Design Compiler (DC) on a 25nm CMOS process. As a result of the experiment, the proposed multiplier reduced area by 10.47%, power by 26.11%, and delay time by 13% compared to the conventional approximate multiplier.

Does a Frontal 2-Electrode Electroencephalogram Provide Sufficient Neuropsychological Information in Various Major Psychiatric Disorders?

  • Sol Han;Hyen-Ho Hwang;Kang-Min Choi;Sungkean Kim;Seung-Hwan Lee
    • Anxiety and mood
    • /
    • v.20 no.1
    • /
    • pp.8-16
    • /
    • 2024
  • Objective : The purpose of this study is to compare the signal obtained from the frontal 2-electrodes EEG with that obtained from the temporal, central, and parietal 2 electrodes. Methods : EEGs were recorded in a total of 67 patients with major depressive disorder (MDD), 104 patients with schizophrenia (SCZ), and 29 patients with Alzheimer's disease (AD). For each disease group, there were healthy controls (HC) that were paired accordingly (HC1=69, HC2=104, HC3=27). The following measurements were compared across electrodes: band power, alpha peak frequency (APF), APF power, alpha asymmetry (AA), and Kolmogorov complexity (KC). Results : Statistically significant differences were found in band power measured from frontal electrodes compared to electrodes placed in other locations. Specifically, the power of theta waves was measured higher in the temporal electorodes, alpha 1 and alpha 2 waves in the parietal, beta 1 and beta 2 in the central, and gamma waves in the temporal electrodes. Both SCZ and AD patients showed increased theta power in all electrodes. In SCZ patients, APF decreased in the central and temporal electrodes, but the APF power analysis showed no difference between the patients and controls. Additionally, AD patients exhibited increased AA in the central EEG, while SCZ patients showed decreased KC in the parietal and temporal electrodes. Conclusion : Depending on the electrode location, sensitive EEG frequencies differed. Compared with signals from other electrodes, frontal EEG in MDD patients revealed generally constant signal values, though the temporo-parieto-central electrodes appeared to be more reliable in SCZ and AD patients.

Analysis of load data for developing a self-propelled underground crop harvester during potato harvesting

  • Min Jong Park;Seung Min Baek;Seung Yun Baek;Hyeon Ho Jeon;Wan Soo, Kim;Ryu Gap, Lim;Yong Joo Kim
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.897-907
    • /
    • 2022
  • The purpose of this study is to develop a self-propelled underground crop harvester and its performance was evaluated by measuring the load during actual potato harvesting operations. This study was conducted at a constant working speed of 1 km·h-1. A load measurement system was installed to measure the actual load and the required working power was analyzed. A hydraulic pressure sensor was also installed to measure the hydraulic pressure. The required hydraulic power was calculated using the hydraulic pressure and flow rate. The results showed that the engine speed, torque, and power during harvesting operation were in the range of 845 - 1,423 rpm, 95 - 228 Nm, and 9 - 31 kW, respectively. Traction power, excluding the hydraulic pump of the tractor and power take-off (PTO) output, was in the range of 9 - 28 kW, and it was confirmed that it occupies a ratio of 16.2 to 50% of the engine rated output. The engine can supply the minimum required traction power to move the vehicle. This means that the engine used in this study could be down-sized to be suitable for an underground crop harvester. In this study, the gear stages of the tractor were not considered. This research thus shows the possibility of developing a self-propelled underground crop harvester.

Uncertainty Observer using the Radial Basis Function Networks for Induction Motor Control

  • Huh, Sung-Hoe;Lee, Kyo-Beum;Ick Choy;Park, Gwi-Tae;Yoo, Ji-Yoon
    • Journal of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.1-11
    • /
    • 2004
  • A stable adaptive sensorless speed controller for three-level inverter fed induction motor direct torque control (DTC) system using the radial-basis function network (RBFN) is presented in this paper. Torque ripple in the DTC system for high power induction motor could be drastically reduced with the foregoing researches of switching voltage selection and torque ripple reduction algorithms. However, speed control performance is still influenced by the inherent uncertainty of the system such as parametric uncertainty, external load disturbances and unmodeled dynamics, and its exact mathematical model is much difficult to be obtained due to their strong nonlinearity. In this paper, the inherent uncertainty is approximated on-line by the RBFN, and an additional robust control term is introduced to compensate for the reconstruction error of the RBFN instead of the rich number of rules and additional updated parameters. Control law for stabilizing the system and adaptive laws for updating both of weights in the RBFN and a bounding constant are established so that the whole closed-loop system is stable in the sense of Lyapunov, and the stability proof of the whole control system is presented. Computer simulations as well as experimental results are presented to show the validity and effectiveness of the proposed system.

Utility Interactive Photovoltaic Generation System Using Discontinuous Mode Buck-Boost Chopper (불연속모드 승강압초퍼를 이용한 계통연계형 태양광발전 시스템)

  • 김영철;이현우;서기영
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.325-331
    • /
    • 1999
  • In a utility interactive photovoltaic generation system. a PWM inverter is used for the connection between the p photovoltaic arrays and the utility. The dc current becomes pulsated when the conventional inverter system operates i in the continuous current mode and de current pulsation causes the distortion of the accurrent waveform. This paper p presents the reduced pulsation of de input current by operating the inverter with buck-boost chopper in the d discontinuous conduction mode. The dc current which contains harmonic component is analyzed by means of s separating into two terms of a ripple component and a direct component. The constant dc current without p pulsation is supplied from photovoltaic array to the inverter. The proposed inverter system provides a sinusoidal ac c current for domestic loads and the utility line with unity power factor.

  • PDF

1D AND 3D ANALYSES OF THE ZY2 SCIP BWR RAMP TESTS WITH THE FUEL CODES METEOR AND ALCYONE

  • Sercombe, J.;Agard, M.;Struzik, C.;Michel, B.;Thouvenin, G.;Poussard, C.;Kallstrom, K.R.
    • Nuclear Engineering and Technology
    • /
    • v.41 no.2
    • /
    • pp.187-198
    • /
    • 2009
  • In this paper, three power ramp tests performed on high burn-up Re-crystallized Zircaloy2 - UO2 BWR fuel rods (56 to 63 MWd/kgU) within the SCIP project are simulated with METEOR and ALCYONE 3D. Two of the ramp tests are of staircase type up to Linear Heat Rates of 420 and 520 W/cm and with long holding periods. Failure of the 420 W/cm fuel rod was observed after 40 minutes. The third ramp test consisted of a more standard ramp test with a constant power rate of 80 W/cm/min up to 410 W/cm with a short holding time. The tests were first simulated with the METEOR 1D fuel rod code, which gave accurate results in terms of profilometry and fission gas releases. The behaviour of a fuel pellet fragment and of the cladding piece on top of it was then investigated with ALCYONE 3D. The size and the main characteristics of the ridges after base irradiation and power ramp testing were recovered. Finally, the failure criteria validated for PWR conditions and fuel rods with low-to-medium burn-ups were used to analyze the failure probability of the KKL rodlets during ramp testing.

A Listening Angle Estimation Scheme based on Received Signal Power Differences in Indoor Environment (실내에서 음향신호의 RSPD를 이용한 청음각 추정 기법)

  • Lee, Eui-Hyoung;Yoo, Seung-Soo;Yoon, Eun-Chul;Kim, Sun-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12C
    • /
    • pp.1035-1043
    • /
    • 2010
  • This paper presents a listening angle estimation scheme based on received signal power difference (RSPD) using acoustic signals, and analyzes the performance of the proposed scheme. The RSPD as the measurement to estimate the listening angle is considered for the first time in this paper. We mathematically analyze the error characteristics of the proposed scheme and present the characteristics of the proposed scheme through the Monte-Carlo simulation. We also conduct actual experiments in an anechoic room to evaluate the performance of the proposed scheme to compare with the conventional scheme.

An Optimized Stacked Driver for Synchronous Buck Converter

  • Lee, Dong-Keon;Lee, Sung-Chul;Jeong, Hang-Geun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.2
    • /
    • pp.186-192
    • /
    • 2012
  • Half-rail stacked drivers are used to reduce power consumption of the drivers for synchronous buck converters. In this paper, the stacked driver is optimized by matching the average charging and discharging currents used by high-side and low-side drivers. By matching the two currents, the average intermediate bias voltage can remain constant without the aid of the voltage regulator as long as the voltage ripple stays within the window defined by the hysteresis of the regulator. Thus the optimized driver in this paper can minimize the power consumption in the regulator. The current matching requirement yields the value for the intermediate bias voltage, which deviates from the half-rail voltage. Furthermore the required capacitance is also reduced in this design due to decreased charging current, which results in significantly reduced die area. The detailed analysis and design of the stacked driver is verified through simulations done using 5V MOSFET parameters of a typical 0.35-${\mu}m$ CMOS process. The difference in power loss between the conventional half-rail driver and the proposed driver is less than 1%. But the conventional half-rail driver has excess charge stored in the capacitor, which will be dissipated in the regulator unless reused by an external circuit. Due to the reduction in the required capacitance, the estimated saving in chip area is approximately 18.5% compared to the half-rail driver.

Advanced Field Weakening Control for Squirrel-Cage Induction Motor in Wide Range of DC-Link Voltage Conditions

  • Son, Yung-Deug;Jung, Jun-Hyung;Kim, Jang-Mok
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.665-673
    • /
    • 2017
  • This paper proposes a field weakening control method for operating an induction motor with a variable DC input voltage condition. In the variable DC voltage condition such as a battery, the field weakening method are required for the maximum output power. The conventional field weakening control methods can be used for operating the induction motor over the rated speed in a constant DC-link voltage condition. However, the conventional methods for operating the motor with the variable DC voltage is not suitable for the maximum output power. To overcome this problem, this paper proposes the optimized field weakening control method to extend the operating range of the induction motor with a rated power in a limited thermal and a wide DC input voltage conditions. The optimized d-axis and q-axis current equations are derived according to the field weakening region I and II to extend the operating region. The experimental results are presented to verify the effectiveness of the proposed method.