DOI QR코드

DOI QR Code

Does a Frontal 2-Electrode Electroencephalogram Provide Sufficient Neuropsychological Information in Various Major Psychiatric Disorders?

  • Sol Han (Department of Psychiatry, Ilsan Paik Hospital, Inje University) ;
  • Hyen-Ho Hwang (Clinical Emotion and Cognition Research Laboratory, Inje University) ;
  • Kang-Min Choi (Clinical Emotion and Cognition Research Laboratory, Inje University) ;
  • Sungkean Kim (Department of Human-Computer Interaction, Hanyang University) ;
  • Seung-Hwan Lee (Department of Psychiatry, Ilsan Paik Hospital, Inje University)
  • 투고 : 2023.12.27
  • 심사 : 2024.03.29
  • 발행 : 2024.04.30

초록

Objective : The purpose of this study is to compare the signal obtained from the frontal 2-electrodes EEG with that obtained from the temporal, central, and parietal 2 electrodes. Methods : EEGs were recorded in a total of 67 patients with major depressive disorder (MDD), 104 patients with schizophrenia (SCZ), and 29 patients with Alzheimer's disease (AD). For each disease group, there were healthy controls (HC) that were paired accordingly (HC1=69, HC2=104, HC3=27). The following measurements were compared across electrodes: band power, alpha peak frequency (APF), APF power, alpha asymmetry (AA), and Kolmogorov complexity (KC). Results : Statistically significant differences were found in band power measured from frontal electrodes compared to electrodes placed in other locations. Specifically, the power of theta waves was measured higher in the temporal electorodes, alpha 1 and alpha 2 waves in the parietal, beta 1 and beta 2 in the central, and gamma waves in the temporal electrodes. Both SCZ and AD patients showed increased theta power in all electrodes. In SCZ patients, APF decreased in the central and temporal electrodes, but the APF power analysis showed no difference between the patients and controls. Additionally, AD patients exhibited increased AA in the central EEG, while SCZ patients showed decreased KC in the parietal and temporal electrodes. Conclusion : Depending on the electrode location, sensitive EEG frequencies differed. Compared with signals from other electrodes, frontal EEG in MDD patients revealed generally constant signal values, though the temporo-parieto-central electrodes appeared to be more reliable in SCZ and AD patients.

키워드

과제정보

We would like to thank all individuals who directly or indirectly contributed to this research.

참고문헌

  1. Ogrim G, Kropotov J, Hestad K. The QEEG theta/beta ratio in ADHD and normal controls: sensitivity, specificity, and behavioral correlates. Psychiatry Research. 2012;198:482-488. https://doi.org/10.1016/j.psychres.2011.12.041
  2. Snyder SM, Hall JR. A meta-analysis of quantitative EEG power associated with attention-deficit hyperactivity disorder. Journal of Clinical Neurophysiology 2006;23:441-456. https://doi.org/10.1097/01.wnp.0000221363.12503.78
  3. Kaiser AK, Gnjezda MT, Knasmuller S, Aichhorn W. Electroencephalogram alpha asymmetry in patients with depressive disorders: current perspectives. Neuropsychiatr Dis Treat. 2018;14:1493-1504. https://doi.org/10.2147/NDT.S137776
  4. Park Y, Jung W, Kim S, Jeon H, Lee SH. Frontal alpha asymmetry correlates with suicidal behavior in major depressive disorder. Clin Psychopharmacol Neurosci 2019;17:377-387. https://doi.org/10.9758/cpn.2019.17.3.377
  5. Boutros NN, Arfken C, Galderisi S, Warrick J, Pratt G, Iacono W. The status of spectral EEG abnormality as a diagnostic test for schizophrenia. Schizophr Res 2008;99:225-237. https://doi.org/10.1016/j.schres.2007.11.020
  6. Gambini O, Colombo C, Macciardi F, Locatelli M, Calabrese G, Sacchetti E, et al. EEG power spectrum profile and structural CNS characteristics in schizophrenia. Biol Psychiatry 1990;27:1331-1334. https://doi.org/10.1016/0006-3223(90)90504-U
  7. Alotaiby T, El-Samie FEA, Alshebeili SA, Ahmad I. A review of channel selection algorithms for EEG signal processing. EURASIP Journal on Advances in Signal Processing 2015;2015:66.
  8. Zhang Y, Wang K, Wei Y, Guo X, Wen J, Luo Y. Minimal EEG channel selection for depression detection with connectivity features during sleep. Comput Biol Med 2022;147:105690.
  9. Lee K, Choi KM, Park S, Lee SH, Im CH. Selection of the optimal channel configuration for implementing wearable EEG devices for the diagnosis of mild cognitive impairment. Alzheimer's Research & Therapy 2022;14:170.
  10. Gertz HJ, Wolf H, Arendt T. Psychiatric disorders of the frontal lobe. Current Opinion in Psychiatry 1999;12:321-324. https://doi.org/10.1097/00001504-199905000-00012
  11. Lee SH, Hwang HH, Kim S, Hwang J, Park J, Park S. Clinical implication of maumgyeol basic service-the 2 channel electroencephalography and a photoplethysmogram-based mental health evaluation software. Clin Psychopharmacol Neurosci 2023;21:583-593. https://doi.org/10.9758/cpn.23.1062
  12. Semlitsch HV, Anderer P, Schuster P, Presslich O. A solution for reliable and valid reduction of ocular artifacts, applied to the P300 ERP. Psychophysiology 1986;23:695-703. https://doi.org/10.1111/j.1469-8986.1986.tb00696.x
  13. Kim J, Lee HC, Byun SH, Lim H, Lee M, Choung Y, et al. Frontal electroencephalogram activity during emergence from general anaesthesia in children with and without emergence delirium. Br J Anaesth 2021;126:293-303. https://doi.org/10.1016/j.bja.2020.07.060
  14. Choi KM, Kim JY, Kim YW, Han JW, Im CH, Lee SH. Comparative analysis of default mode networks in major psychiatric disorders using resting-state EEG. Scientific Reports 2021;11:22007.
  15. Janssens SE, Sack AT, Ten Oever S, de Graaf TA. Calibrating rhythmic stimulation parameters to individual electroencephalography markers: The consistency of individual alpha frequency in practical lab settings. European Journal of Neuroscience 2022;55:3418-3437. https://doi.org/10.1111/ejn.15418
  16. Akdemir Akar S, Kara S, Agambayev S, Bilgic V. Nonlinear analysis of EEGs of patients with major depression during different emotional states. Comput Biol Med 2015;67:49-60. https://doi.org/10.1016/j.compbiomed.2015.09.019
  17. Kaspar F, Schuster HG. Easily calculable measure for the complexity of spatiotemporal patterns. Physical Review A 1987;36:842-848. https://doi.org/10.1103/PhysRevA.36.842
  18. Zhang XS, Roy RJ, Jensen EW. EEG complexity as a measure of depth of anesthesia for patients. IEEE Trans Biomed Eng 2001;48:1424-1433. https://doi.org/10.1109/10.966601
  19. Petrosian A. Kolmogorov complexity of finite sequences and recognition of different preictal EEG patterns. Proceedings of the Eighth IEEE Symposium on Computer-Based Medical Systems; 1995 Jun 9-10; Lubbock, TX, USA. Piscataway, NJ: IEEE;1995. p.212-217.
  20. Curran PJ, West SG, Finch JF. The robustness of test statistics to nonnormality and specification error in confirmatory factor analysis. Psychological Methods 1996;1:16-29. https://doi.org/10.1037/1082-989X.1.1.16
  21. Brooks H, Goodman MS, Bowie CR, Zomorrodi R, Blumberger DM, Butters MA, et al. Theta-gamma coupling and ordering information: a stable brain-behavior relationship across cognitive tasks and clinical conditions. Neuropsychopharmacology. 2020;45:2038-2047. https://doi.org/10.1038/s41386-020-0759-z
  22. Olbrich S, Arns M. EEG biomarkers in major depressive disorder: discriminative power and prediction of treatment response. Int Rev Psychiatry 2013;25:604-618. https://doi.org/10.3109/09540261.2013.816269
  23. Thilakavathi B, Shenbaga Devi S, Malaiappan M, Bhanu K. EEG power spectrum analysis for schizophrenia during mental activity. Australas Phys Eng Sci Med 2019;42:887-897. https://doi.org/10.1007/s13246-019-00779-w
  24. Bennys K, Rondouin G, Vergnes C, Touchon J. Diagnostic value of quantitative EEG in Alzheimer's disease. Neurophysiol Clin 2001;31:153-160. https://doi.org/10.1016/S0987-7053(01)00254-4
  25. Roh JH, Park MH, Ko D, Park KW, Lee DH, Han C, et al. Region and frequency specific changes of spectral power in Alzheimer's disease and mild cognitive impairment. Clinical Neurophysiology 2011;122:2169-2176. https://doi.org/10.1016/j.clinph.2011.03.023
  26. Eratne D, Loi SM, Farrand S, Kelso W, Velakoulis D, Looi JC. Alzheimer's disease: clinical update on epidemiology, pathophysiology and diagnosis. Australas Psychiatry 2018;26:347-357. https://doi.org/10.1177/1039856218762308
  27. Angelakis E, Stathopoulou S, Frymiare JL, Green DL, Lubar JF, Kounios J. EEG neurofeedback: a brief overview and an example of peak alpha frequency training for cognitive enhancement in the elderly. Clin Neuropsychol 2007;21:110-129. https://doi.org/10.1080/13854040600744839
  28. Karlsgodt KH, Niendam TA, Bearden CE, Cannon TD. White matter integrity and prediction of social and role functioning in subjects at ultra-high risk for psychosis. Biol Psychiatry 2009;66:562-569. https://doi.org/10.1016/j.biopsych.2009.03.013
  29. Exner C, Weniger G, Schmidt-Samoa C, Irle E. Reduced size of the pre-supplementary motor cortex and impaired motor sequence learning in first-episode schizophrenia. Schizophr Res 2006;84:386-396. https://doi.org/10.1016/j.schres.2006.03.013
  30. Martin T, Giordani B, Kavcic V. EEG asymmetry and cognitive testing in MCI identification. Int J Psychophysiol 2022;177:213-219. https://doi.org/10.1016/j.ijpsycho.2022.05.012
  31. Akar SA, Kara S, Latifoglu F, Bilgic V. Analysis of the complexity measures in the EEG of schizophrenia patients. Int J Neural Syst 2016;26:1650008.
  32. Kumral E, Ozturk O. Delusional state following acute stroke. Neurology 2004;62:110-113. https://doi.org/10.1212/WNL.62.1.110
  33. Yoshimura M, Koenig T, Irisawa S, Isotani T, Yamada K, Kikuchi M, et al. A pharmaco-EEG study on antipsychotic drugs in healthy volunteers. Psychopharmacology (Berl) 2007;191:995-1004. https://doi.org/10.1007/s00213-007-0737-8
  34. Mucci A, Volpe U, Merlotti E, Bucci P, Galderisi S. Pharmaco-EEG in psychiatry. Clin EEG Neurosci 2006;37:81-98. https://doi.org/10.1177/155005940603700206