DOI QR코드

DOI QR Code

A Study on the Maximum Energy Transfer of a Small Industrial Induction Heater

소형산업용 인덕션 히터의 최대에너지 전달에 관한 연구

  • Received : 2021.09.24
  • Accepted : 2021.09.30
  • Published : 2021.09.30

Abstract

Induction heating method that allows the maximum heating power to be delivered by varying switching frequency in the inductance change of the work coil of induction heater was proposed in this paper. Depending on the type of work piece in the work coil and proximity to the work coil, the resonance frequency of the resonant circuit will be changed. It may be difficult to deliver the maximum power due to the damage of the induced heater element or switching loss depending on the resonance frequency and switching frequency operating relationship. The switching frequency was variable to maintain the maximum power transmission by sensing the heating power due to the change of the resonance frequency. Through the result of the proposed method that can be controlled within the required output change range according to the change of the switching frequency corresponding to the change of the resonance frequency, the induction heater having a variable switching frequency characteristic that can transmit almost constant output power (within 0.43 dB) power efficiency was achieved.

본 논문에서는 유도 가열코일의 인덕턴스 변화 환경에서 스위칭주파수를 가변하여 최대 가열 전력이 전달될 수 있는 유도 가열 방식을 제안하였다. 가열코일내 피 가열체 종류 및 가열코일과의 근접도에 따라 공진회로의 공진주파수가 변화하게 되며, 공진주파수와 스위칭주파수 관계에 따라 유도가열기 소자의 파손 또는 손실이 발생하여 최대 전력 전달이 어려울 수 있다. 공진주파수의 변화에 따른 가열 전력을 감지하여 최대 전력 전달이 유지되도록 스위칭주파수를 가변하도록 하였다. 공진 주파수 변화에 대응하는 스위칭주파수 가변에 따라 요구하는 출력 변화 범위내로 제어될 수 있는 제안된 방식의 결과를 통하여 거의 일정한 출력전력(0.43 dB 이내) 전달이 가능한 스위칭주파수 가변특성을 갖는 유도가열기의 전력 효율성을 확보할 수 있었다.

Keywords

References

  1. L. HLQ Induction Equipment Co., "Induction Heating Theory-Principle," https://dw-inductionheater.com/wp-content/op1oads/2020/05/induction_heating_theory.pdf
  2. Henry W. Koertzen, et al, "Design of the Half-Bridge Series Resonant Converter for Induction Cooking," in proc. of IEEE-PESC conference, pp.729-735, 1995. DOI: 10.1109/PESC.1995.474899
  3. Dmitriy S. Brazhnik, Kirill E. Bolotin, "Different Approaches to Taking Joule Heat into Induction Heating of Graphite Crucible," in Proc. of IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, pp.616-618, 2020. DOI: 10.1109/EIConRus49466.2020.9039247
  4. Ryosuke Kawashima, et al., "Three-Phase to Single-Phase Multiresonant Direct AC-DC Converter for Metal Hardening High Frequency Induction Heating Applications," IEEE Transactions on Power Electronics, vol.36, issue1, pp.639-653. 2021. DOI: 10.1109/TPEL.2020.3003026
  5. Sang-hoon Park, "A study on the characteristics of electric superheater using induction heating," Domestic Master's Thesis, Hoseo University Graduate School, 2012.
  6. Seong-hyuk Im, "Temperature rise of hot bar in induction heating process," Domestic Master's Thesis, Chonbuk National University Graduate School, 2015.
  7. R. Beiranvand, B. Rashidian, M. Zolghadri and S. M. H. Alavi, "A Design Procedure for Optimizing the LLC Resonant Converter as a Wide Output Range Voltage Source," in IEEE Transactions on Power Electronics, vol.27, no.8, pp.3749-3763, 2012. DOI: 10.1109/TPEL.2012.2187801
  8. R. Zheng, B. Liu and S. Duan, "Analysis and Parameter Optimization of Start-Up Process for LLC Resonant Converter," in IEEE Transactions on Power Electronics, vol.30, no.12, pp.7113-7122, 2015. DOI: 10.1109/TPEL.2015.2389116
  9. Rashid, Muhammad H., Power Electronics Handbook, 4 th Ed., Butterworth-Heinemann, ISBN 978-0128114087, 2017.
  10. Sang-bong Yoo, "A Study on the Reliability and Optimal Control of Half-Bridge Inverter for Induction Heating System," Journal of the Korean Society of Professional Engineers, vol.33, no.1, pp.94-105, 2000.