• Title/Summary/Keyword: conductive layer

Search Result 428, Processing Time 0.028 seconds

Manganese Doped LiFePO4 as a Cathode for High Energy Density Lithium Batteries (고에너지밀도 리튬전지를 위한 망간이 첨가된 LiFePO4 양극재료)

  • Kim, Dul-Sun;Kim, Jae-Kwang;Ahn, Jou-Hyeon
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.3
    • /
    • pp.157-161
    • /
    • 2013
  • Porous $LiMn_{0.6}Fe_{0.4}PO_4$ (LMFP) was synthesized by a sol-gel process. Uniform dispersion of the conductive carbon source throughout LMFP with uniform carbon coating was achieved by heating a stoichiometric mixture of raw materials at $600^{\circ}C$ for 10 h. The crystal structure of LMFP was investigated by Rietveld refinement. The surface structure and pore properties were investigated by SEM, TEM and BET. The LMFP so obtained has a high specific surface area with a uniform, porous, and web-like nano-sized carbon layer at the surface. The initial discharge capacity and energy density were 152 mAh/g and 570 Wh/kg, respectively, at 0.1 C current density, and showed stable cycle performance. The combined effect of high porosity and uniform carbon coating leads to fast lithium ion diffusion and enhanced electrochemical performance.

Design of Ultra Waveband Coplanar Waveguide-Fed L-planar Type Monopole Antennas (초광대역(UWB) Coplanar Waveguide 급전 L자 평면형 모노폴 안테나 설계)

  • Kim, Joon-Il;Lee, Won-Taek;Chang, Jin-Woo;Jee, Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.1 s.116
    • /
    • pp.82-89
    • /
    • 2007
  • This paper presents a coplanar waveguide fed L-planar type monopole antenna which covers ultra wideband(UWB) region of 3.1 GHz to 10.6 GHz. The proposed UWB L-planar type monopole antenna is designed and implemented on the organic substrates( ${\varepsilon}_{r}=3.38,\;@10\;GHz$). The radiation elements, feed line, and ground planes of the antenna are printed on the same conductive layer of the substrates. The bandwidth of the proposed antenna is measured in the range of 3.0 GHz to 11.0 GHz. The measured radiation patterns are symmetrical in E-plane and omni-directional in H-plane. Antenna gains ranges from 1.4 dBi to 4.6 dBi. The proposed UWB antenna shows that the structure is adequate for the design of RFIC.

A Study on Fabrication and Characteristics of Nonvolatile SNOSFET EEPROM with Channel Sizes (채널크기에 따른 비휘방성 SNOSFET EEPROM의 제작과 특성에 관한 연구)

  • 강창수;이형옥;이상배;서광열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.05a
    • /
    • pp.91-96
    • /
    • 1992
  • The nonvolatile SNOSFET EEPROM memory devices with the channel width and iength of 15[$\mu\textrm{m}$]${\times}$15[$\mu\textrm{m}$], 15[$\mu\textrm{m}$]${\times}$1.5[$\mu\textrm{m}$] and 1.9[$\mu\textrm{m}$]${\times}$1.7[$\mu\textrm{m}$] were fabricated by using the actual CMOS 1 [Mbit] process technology. The charateristics of I$\_$D/-V$\_$D/, I$\_$D/-V$\_$G/ were investigated and compared with the channel width and length. From the result of measuring the I$\_$D/-V$\_$D/ charges into the nitride layer by applying the gate voltage, these devices ere found to have a low conductance state with little drain current and a high conductance state with much drain current. It was shown that the devices of 15[$\mu\textrm{m}$]${\times}$15[$\mu\textrm{m}$] represented the long channel characteristics and the devices of 15[$\mu\textrm{m}$]${\times}$1.5[$\mu\textrm{m}$] and 1.9[$\mu\textrm{m}$]${\times}$1.7[$\mu\textrm{m}$] represented the short channel characteristics. In the characteristics of I$\_$D/-V$\_$D/, the critical threshold voltages of the devices were V$\_$w/ = +34[V] at t$\_$w/ = 50[sec] in the low conductance state, and the memory window sizes wee 6.3[V], 7.4[V] and 3.4[V] at the channel width and length of 15[$\mu\textrm{m}$]${\times}$15[$\mu\textrm{m}$], 15[$\mu\textrm{m}$]${\times}$1.5[$\mu\textrm{m}$], 1.9[$\mu\textrm{m}$]${\times}$1.7[$\mu\textrm{m}$], respectively. The positive logic conductive characteristics are suitable to the logic circuit designing.

  • PDF

Dispersion Characteristics of Ag Pastes and Properties of Screen-printed Source-drain Electrodes for OTFTs (Ag Pastes의 분산 특성 및 스크린 인쇄된 OTFTs용 전극 물성)

  • Lee, Mi-Young;Nam, Su-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.9
    • /
    • pp.835-843
    • /
    • 2008
  • We have fabricated the source-drain electrodes for OTFTs by screen printing method and manufactured Ag pastes as conductive paste. To obtain excellent conductivity and screen-printability of Ag pastes, the dispersion characteristics of Ag pastes prepared from two types of acryl resins with different molecular structures and Ag powder treated with caprylic acid, triethanol amine and dodecane thiol as surfactant respectively were investigated. The Ag pastes containing Ag powder treated with dodecane thiol having thiol as anchor group or AA4123 with carboxyl group(COOH) of hydrophilic group as binder resin exhibited excellent dispersity. But, Ag pastes(CA-41, TA-41, DT-41) prepared from AA4123 fabricated the insulating layer since the strong interaction between surface of Ag powder and carboxyl group(COOH) of AA4123 interfered with the formation of conduction path among Ag powders. The viscosity behavior of Ag pastes exhibited shear-thinning flow in the high shear rate range and the pastes with bad dispersion characteristic demonstrated higher shear-thinning index than those with good dispersity due to the weak flocculated network structure. The output curve of OTFT device with a channel length of 107 ${\mu}m$ using screen-printed S-D electrodes from DT-30 showed good saturation behavior and no significant contact resistance. And this device exhibited a saturation mobility of $4.0{\times}10^{-3}$ $cm^2/Vs$, on/off current ratio of about $10^5$ and a threshold voltage of about 0.7 V.

Electrochemical methodologies for fabrication of urea-sensitive electrodes composed of porous silicon layer and urease-immobilized conductive polymer film (전기화학적 방법을 이용한 다공질 실리콘 구조 형성, 전도성 고분자코팅, 및 urease 고정화와 감도 특성)

  • Jin, Joon-Hyung;Kang, Moon-Sik;Song, Min-Jung;Min, Nam-Ki;Hong, Suk-In
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1938-1940
    • /
    • 2003
  • 본 연구는 요소 센서 제작을 위한 과정으로서, 전기화학적 방법을 이용한 다공질 실리콘 구조 형성과, PDV(Physical Vapor Deposition) 법에 의한 백금 박막 코팅 및 전기화학적 전도성 고분자 코팅과 urease 고정화 단계를 고찰하고 감도 특성을 제시 하였다. 전극 기질로서 B을 도우핑한 p-type 실리콘웨이퍼를 사용하였고, HF:$C_2H_5OH:H_2O$=1:2:1의 부피비를 갖는 에칭 용액에서 5분간 -7 $mA/cm^2$의 일정 전류를 가하여 폭 2 ${\mu}m$, 깊이 10 ${\mu}m$의 다공질 실리콘(PS) 충을 형성하였다. 그 위에 200 ${\AA}$의 Ti 층을 underlayer로서 증착하고, 2000 ${\AA}$의 Pt를 중착하여 PS/Pt 박막 전극을 제작하고, 전도성 고분자로서 polypyrrole (PPy), 또는 poly(3-mehylthiophene) (P3MT)을 전기화학적으로 코팅한 후, urease(EC 3.5.1.5, type III, Jack Bean, Sigma)를 고정화 하였다. 고정화 시 전해질 수용액의 pH는 7.4로 하여 urease표면이 음전하를 갖도록 하고, 전극에 0.6 V (vs. SCE(Saturated Calomel Electrode))의 일정 전압을 가함으로써 urease가 전도성 고분자 표면에 전기적으로 흡착되도록 하였다. 이상의 방법으로 제작한 요소 센서의 감도는 PPy와 P3MT를 전자 전달 매질로 사용한 경우, 각각 8.44 ${\mu}A/mM{\cdot}cm^2$와 1.55 ${\mu}A/mM{\cdot}cm^2$의 감도를 보였다.

  • PDF

Bonding Strength of Conductive Inner-Electrode Layers in Piezoelectric Multilayer Ceramics

  • Wang, Yiping;Yang, Ying;Zheng, Bingjin;Chen, Jing;Yao, Jinyi;Sheng, Yun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.4
    • /
    • pp.181-184
    • /
    • 2017
  • Multilayer ceramics in which piezoelectric layers of $0.90Pb(Zr_{0.48}Ti_{0.52})O_3-0.05Pb(Mn_{1/3}Sb_{2/3})O_3-0.05Pb(Zn_{1/3}Nb_{2/3})O_3$ (0.90PZT-0.05PMS-0.05PZN) stack alternately with silver electrode layers were prepared by an advanced low-temperature co-fired ceramic (LTCC) method. The electrical properties and bonding strength of the multilayers were associated with the interface morphologies between the piezoelectric and silver-electrode layers. Usually, the inner silver electrodes are fabricated by sintering silver paste in multi-layer stacks. To improve the interface bonding strength, piezoelectric powders of 0.90PZT-0.05PMS-0.05PZN with an average particle size of $23{\mu}m$ were added to silver paste to form a gradient interface. SEM observation indicated clear interfaces in multilayer ceramics without powder addition. With the increase of piezoelectric powder addition in the silver paste, gradient interfaces were successfully obtained. The multilayer ceramics with gradient interfaces present greater bonding strength as well as excellent piezoelectric properties for 30~40 wt% of added powder. On the other hand, over addition greatly increased the resistance of the inner silver electrodes, leading to a piezoelectric behavior like that of bulk ceramics in multilayers.

Oxidation-treated of Oxidized Carbons and its Electrochemical Performances for Electric Double Layer Capacitor (산화처리 탄소의 전기화학적 거동 및 이를 이용한 EDLC 특성)

  • Yang, Sun-Hye;Kim, Ick-Jun;Jeon, Min-Je;Moon, Seong-In;Kim, Hyun-Soo;An, Kye-Hyeok;Lee, Yun-Pyo;Lee, Young-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.481-481
    • /
    • 2007
  • This work describes the effect of the number of roll pressing and the composition of carbon black on the electric and mechanical properties of carbon-PTFE electrode, in which composition is MSP 20 : carbon black: PTFE = 95-x : x : 5 wt.%. It was found that the best electric and mechanical properties were obtained in sheet electrode roll-pressed for about 15 times and in sheet electrode, in which composition is MSP 20 : carbon black: PTFE = 80 : 15 : 5 wt.%. These behaviors could be explained by the network structure of PTFE fibrils and conducting paths linked with carbon blacks, respectively. On the other hand, cell capacitor using the sheet electrode with 15 wt.% of carbon black attached on aluminum current collector with the electric conductive adhesive, in composition is carbon black : CMC = 70 : 30 wt.%, has exhibited the best rate capability in the current range of $0.5mA/cm^2$ $100mA/cm^2$ and the lowest equivalent series resistance.

  • PDF

Nanoprobing Charge Transport Properties of Strained and Indented Topological Insulator

  • Hwang, Jin Heui;Kwon, Sangku;Park, Joonbum;Lee, Jhinhwan;Kim, Jun Sung;Lyeo, Ho-Ki;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.128.1-128.1
    • /
    • 2013
  • We investigated the correlation between electrical transport and mechanical stress in $Bi_2Te_2Se$ by using a conductive probe atomic force microscopy in an ultra-high vacuum environment. Uniform distribution of measured friction and current were observed over a single quintuple layer terrace, which is an indication of the uniform chemical composition of the surface. By measuring the charge transport of $Bi_2Te_2Se$ surface as a function of the load applied by a tip to the sample, we found that the current density varies with applied load. The variation of current density was explained in light of the combined effect of the changes in the in-plane conductance and spin-orbit coupling that were theoretically predicted. We suppose that the local density of states is modified by tip-induced strain, but topological phase still remains. We exposed a clean topological insulator surface by tip-induced indentation. The surface conductance on the indented $Bi_2Te_2Se$ surface was studied, and the role of surface oxide on the surface conductance is discussed.

  • PDF

Analysis of the TE Scattering by a Resistive Strip Grating Over a Grounded Dielectric Plane (접지된 유전체 평면위의 저항띠 격자구조에 의한 TE 산란 해석)

  • Yoon, Uei-Joong
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.3
    • /
    • pp.198-204
    • /
    • 2006
  • In this paper, TE(transverse electric) scattering problems by a resistive strip grating on a grounded dielectric plane according to the strip width and grating period, the relative permittivity and thickness of dielectric layer, and incident angles of a TE plane wave are analyzed by applying the FGMM(Fourier-Galerkin Moment Method) known as a numerical procedure. The induced surface current density is simply expanded in a Fourier series by using the exponential function as a simple function. The reflected power gets increased according as the relative permittivity and thickness of dielectric multilayers gets increased, the sharp variations of the reflected power are due to resonance effects were previously called wood's anomallies[7]. To verify the validity of the proposed method, the numerical results of normalized reflected power for the uniform resistivity R = 0 as a conductive strip case show in good agreement with those in the existing paper.

  • PDF

Electrical and Optical Properties of Amorphous ITZO Deposited at Room Temperature by RF Magnetron Sputtering (RF 마그네트론 스퍼터링법으로 상온 증착된 비정질 ITZO 산화물의 전기적 및 광학적 특성)

  • Lee, Ki Chang;Jo, Kwang-Min;Lee, Joon-Hyung;Kim, Jeong-Joo;Heo, Young-Woo
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.5
    • /
    • pp.239-243
    • /
    • 2014
  • The electrical and optical properties of amorphous In-Tin-Zinc-Oxide(ITZO) deposited at room temperature using rf-magnetron sputtering were investigated. The amorphous ITZO thin films were obtained at the composition of In:Sn:Zn = 6:2:2, 4:3:3, and 2:4:4, but the ITZO (8:1:1) showed a crystalline phase of bixbyite structure of In2O3. The resistivity of ITZO could be controlled by oxygen pressure in the sputtering ambient. The resistivity of post-annealed ITZO thin films exhibited the dependence on the amount of Indium. Optical energy band gap and transmittance increased as the amount of indium in ITZO increased. For the device application with ITZO, the bottom-gated thin-film transistor using ITZO as a active channel layer was fabricated. It showed a threshold voltage of 1.42V and an on/off ratio of $5.63{\times}10^7$ operated with saturation field-effect mobility of $14.2cm^2/V{\cdot}s$.