• Title/Summary/Keyword: concatenated code

Search Result 112, Processing Time 0.028 seconds

The Study about Channel code to Overcome Multipath of Underwater Channel (수중통신채널에서 다중경로 극복을 위한 오류정정부호에 대한 연구)

  • Kim, Nam-Soo;Kim, Min-Hyuk;Park, Tae-Doo;Kim, Chul-Seung;Jung, Ji-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.738-745
    • /
    • 2009
  • Underwater acoustic communication has multipath error because of reflection by sea-level and sea-bottom. The multipath of underwater channel causes receive signal to make error floor. In this paper, we propose the underwater communication system using various channel coding schemes such as RS coding, convolutional code, turbo code and concatenated code for overcoming the multipath effect in underwater channel. As shown in simulation results, characteristic of multipath error is similar to that of random error. So interleaver has not effect on error correcting. For correcting of error floor by multipath, it is necessary to use strong channel codes like turbo code. Turbo code is one of the iterative codes. And the performance of concatenated codes including RS code has better performance than using singular channel codes.

Performance Comparison of Concatenated Codes with Different Inner Decoding Schemes in Frequency-Hopping Spread Spectrum Multiple-Access Channels (주파수 도약 대역확산 다중접속 채널에서 내 부호 복호화 기법에 따른 쇄상부호의 성능 비교)

  • Lee, Ye Hoon
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.2
    • /
    • pp.114-118
    • /
    • 2014
  • In this paper, we analyze the performance of a concatenated code with two different inner decoding schemes. One is the error-detecting inner decoding, and the other is the error-detecting-and-correcting inner decoding scheme. We compare the performances of the two decoding schemes for finite and infinite block length cases when the concatenated code is applied to slow frequency-hopping spread-spectrum multiple access (FH-SSMA) communication systems.

The Performance Analysis of the Concatenated Coding System using Punctured Convolutional Code in the Satellite Channel (위성 채널에서 펑쳐드 콘볼루션 부호를 이용한 직렬연결 부호 시스템의 성능 분석)

  • 정호영;강창언
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.6
    • /
    • pp.1115-1125
    • /
    • 1994
  • In this paper, an efficient concatenated coding scheme under the satellite channel is presented. The performance of this scheme in terms of bit error rate versus energy per information bit over white gaussian noise power density E/N has been evaluated via computer simulation as a function of various system parameters. To achieve accuracy in simulation results, the distortions caused from the satellite channel, such as the nonlinearity of the TWTA(traveling wave tube amplifier), signal distortions of the input and output filters, has been considered. The simulation results show that, through using the 2/3 punctured convolutional code as the inner code of the concatenated code system, the coding rate can be improved more over 16%, while maintaining the same system complexity and bit error performance.

  • PDF

Low Density Parity Check Codes for Hybrid ARQ System

  • Kim, Woo-Tae;Kim, Jeong-Goo;Joo, Eon-Kyeong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.4C
    • /
    • pp.370-378
    • /
    • 2007
  • The most appropriate low density parity check (LDPC) code for hybrid automatic repeat request (HARQ) system suitable for future multimedia communication systems is presented in this paper. HARQ system with punctured LDPC code is investigated at first. And two transmission schemes with parallel concatenated LDPC code are also presented and their performances are analyzed according to the various values of mean column weight (MCW). As a result, the parallel concatenated LDPC code with the diversity effect of information bit is considered to be more appropriate for HARQ system considering the throughput as well as error performance.

A Fault Tolerant ATM Switch using a Fully Adaptive Self-routing Algorithm - The Cyclic Banyan Network (실내 무선 통신로에서 파일럿 심볼을 삽입한 Concatenated FEC 부호에 의한 WATM의 성능 개선)

  • 박기식;강영흥;김종원;정해원;양해권;조성준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.9A
    • /
    • pp.1276-1284
    • /
    • 1999
  • We have evaluated the BER's and CLP's of Wireless ATM (WATM) cells employing the concatenated FEC code with pilot symbols for fading compensation through the simulation in indoor wireless channel modeled as a Rayleigh and a Rician fading channel, respectively. The results of the performance evaluation are compared with those obtained by employing the convolutional code in the same condition. In Rayleigh fading channel, considering the maximum tolerance BER ( $10^-3$) as a criterion of the voice service, it is blown that the performance improvement of about 4 dB is obtained in terms of $E_b/N_o$ by employing the concatenated FEC code with pilot symbols rather than the convolutional code with pilot symbols.When the values of K parameter which means the ratio of the direct signal to scattered signal power in Rician fading channel are 6 and 10, it is shown that the performance improvement of about 4 dB and 2 dB is obtained, respectively, in terms of $E_b/N_o$ by employing the concatenated FEC code with pilot symbols considering the maximum tolerance BER of the voice service. Also in Rician fading channel of K=6 and K= 10, considering CLP = $10^-3$ as a criterion, it is observed that the performance improvement of about 3.5 dB and1.5 dB is obtained, respectively, in terms of $E_b/N_o$ by employing the concatenated FEC code with pilot symbols.

  • PDF

Erasure Decoding Method of RS-Convolutional Concatenated Code in Frequency-Hopping Spread Spectrum of Partial Band Jamming Environment. (부분대역 간섭 환경의 주파수도약 대역확산 시스템에서 RS-콘볼루션 연쇄부호의 Erasure 복호방식)

  • 강병무;유흥균
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.12A
    • /
    • pp.1960-1965
    • /
    • 1999
  • In this paper, we propose a new method of erased concatenated code with RS-convolutional code. In the method, we make use of erasure for undecoded information when we have some errors in RS decoding. For decoding with erasure, the method is processed inner decoding and outer decoding again. After the erasure decoding, if the decoding result is better than the previous one, then we use this result. If not, use the previous one. In this paper, we use concatenated RS(63,31)-convolutional(4.1/2) code. Simulation result is compared with calculation result for performance analysis. According to the result, the proposed method has better performance than the others without erasure such that 2dB when 0.5$\leq\rho\leq$1 and 4dB when $\rho\leq$0.3.

  • PDF

Optical Fiber Code-Division Multiple-Access Networks Using Concatenated Codes

  • Lam, Pham-Manh;Minh, Do-Quang
    • Journal of Communications and Networks
    • /
    • v.4 no.3
    • /
    • pp.170-175
    • /
    • 2002
  • An optical fiber code-division multiple-access (CDMA) network is proposed in which encoding is based on the use of concatenated sequences of relatively large weight. The first short component sequence in the concatenated sequence permits realistic electronic encoding of each data bit. The chips of this sequence are then all-optically encoded at substantially higher rate. In spite of the relatively large weight of the sequence the all-optical encoder is practical by virtue of the shortness of the component sequences. The use of Gold and Lempel sequences as component sequences for generating the concatenated sequences is studied and the bit-error rate (BER) performance of the proposed system is presented as a function of the received optical power with the number of simultaneous users as parameter.

Error Performance of Serially Concatenated Space-Time Coding

  • Altunbas, Ibrahim;Yongacoglu, Abbas
    • Journal of Communications and Networks
    • /
    • v.5 no.2
    • /
    • pp.135-140
    • /
    • 2003
  • In this paper, we investigate the error performance of a serially concatenated system using a nonrecursive convolutional code as the outer code and a recursive QPSK space-time trellis code as the inner code on quasi-static and rapid Rayleigh fading channels. At the receiver, we consider iterative decoding based on the maximum a posteriori (MAP) algorithm. The performance is evaluated by means of computer simulations and it is shown that better error performance can be obtained by using low complexity outer and/or inner codes and the Euclidean distance criterion based recursive space-time inner codes. We also obtain new systems with large number of trasmit and/or receive antennas providing good error performance.

Concatenated Zigzag(CZZ) Code for Improving Error Performance of Uplink Data in Marine Environment (해상 환경에서의 업링크 데이터의 오류성능 개선을 위한 CZZ 부호화)

  • Yun, Jung-Kug
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.648-654
    • /
    • 2011
  • We can model marine uplink channel environment as time-correlated rician fading channel that has direct path and time varying reflected path. In this channel, error performance of uncoded system can be seriously degraded by multipath inteference. In this paper, we propose Concatenated Zigzag(CZZ) coded binary FSK signaling with noncoherent detection to improve error performance of uplink data in marine environment. CZZ code is a kind of channel coding scheme that is fast decodable as well as fast encodable. We have confirmed error performance of uplink data in marine environment can be improved dramatically through applying CZZ code.

A Family of Concatenated Network Codes for Improved Performance With Generations

  • Thibault, Jean-Pierre;Chan, Wai-Yip;Yousefi, Shahram
    • Journal of Communications and Networks
    • /
    • v.10 no.4
    • /
    • pp.384-395
    • /
    • 2008
  • Random network coding can be viewed as a single block code applied to all source packets. To manage the concomitant high coding complexity, source packets can be partitioned into generations; block coding is then performed on each set. To reach a better performance-complexity tradeoff, we propose a novel concatenated network code which mixes generations while retaining the desirable properties of generation-based coding. Focusing on the code's erasure performance, we show that the probability of successfully decoding a generation on erasure channels can increase substantially for any erasure rate. Using both analysis (for small networks) and simulations (for larger networks), we show how the code's parameters can be tuned to extract best performance. As a result, the probability of failing to decode a generation is reduced by nearly one order of magnitude.