• 제목/요약/키워드: complete bipartite

검색결과 31건 처리시간 0.016초

Maximum Bipartite Subgraph 문제를 위한 GRASP + Tabu Search 알고리즘 연구 (Study for the Maximum Bipartite Subgraph Problem Using GRASP + Tabu Search)

  • 한근희;김찬수
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권3호
    • /
    • pp.119-124
    • /
    • 2014
  • G = (V, E) 를 그래프라 하자. Maximum Bipartite Subgraph 문제는 주어진 그래프 G로부터 최소 개수의 간선을 제거함으로써 G 를 이분그래프로 변환시키는 문제이며 결합 최적화 문제들 중 대표적인 문제들 중의 하나로 알려 져 있다. 본 문제는 NP-complete 계열에 포함되는 문제로서 본 연구에서는 Tabu Search 및 GRASP 등을 조합한 새로운 메타휴리스틱 알고리즘을 제시하고자 한다.

EVERY LINK IS A BOUNDARY OF A COMPLETE BIPARTITE GRAPH K2,n

  • Jang, Yongjun;Jeon, Sang-Min;Kim, Dongseok
    • Korean Journal of Mathematics
    • /
    • 제20권4호
    • /
    • pp.403-414
    • /
    • 2012
  • A voltage assignment on a graph was used to enumerate all possible 2-cell embeddings of a graph onto surfaces. The boundary of the surface which is obtained from 0 voltage on every edges of a very special diagram of a complete bipartite graph $K_{m,n}$ is surprisingly the ($m,n$) torus link. In the present article, we prove that every link is the boundary of a complete bipartite multi-graph $K_{m,n}$ for which voltage assignments are either -1 or 1 and that every link is the boundary of a complete bipartite graph $K_{2,n}$ for which voltage assignments are either -1, 0 or 1 where edges in the diagram of graphs may be linked but not knotted.

BIPACKING A BIPARTITE GRAPH WITH GIRTH AT LEAST 12

  • Wang, Hong
    • 대한수학회지
    • /
    • 제56권1호
    • /
    • pp.25-37
    • /
    • 2019
  • Let G be a bipartite graph with (X, Y ) as its bipartition. Let B be a complete bipartite graph with a bipartition ($V_1$, $V_2$) such that $X{\subseteq}V_1$ and $Y{\subseteq}V_2$. A bi-packing of G in B is an injection ${\sigma}:V(G){\rightarrow}V(B)$ such that ${\sigma}(X){\subseteq}V_1$, ${\sigma}(Y){\subseteq}V_2$ and $E(G){\cap}E({\sigma}(G))={\emptyset}$. In this paper, we show that if G is a bipartite graph of order n with girth at least 12, then there is a complete bipartite graph B of order n + 1 such that there is a bi-packing of G in B. We conjecture that the same conclusion holds if the girth of G is at least 8.

H-V -SUPER MAGIC DECOMPOSITION OF COMPLETE BIPARTITE GRAPHS

  • KUMAR, SOLOMON STALIN;MARIMUTHU, GURUSAMY THEVAR
    • 대한수학회논문집
    • /
    • 제30권3호
    • /
    • pp.313-325
    • /
    • 2015
  • An H-magic labeling in a H-decomposable graph G is a bijection $f:V(G){\cup}E(G){\rightarrow}\{1,2,{\cdots},p+q\}$ such that for every copy H in the decomposition, $\sum{_{{\upsilon}{\in}V(H)}}\;f(v)+\sum{_{e{\in}E(H)}}\;f(e)$ is constant. f is said to be H-V -super magic if f(V(G))={1,2,...,p}. In this paper, we prove that complete bipartite graphs $K_{n,n}$ are H-V -super magic decomposable where $$H{\sim_=}K_{1,n}$$ with $n{\geq}1$.

RIGHT-ANGLED ARTIN GROUPS ON PATH GRAPHS, CYCLE GRAPHS AND COMPLETE BIPARTITE GRAPHS

  • Lee, Eon-Kyung;Lee, Sang-Jin
    • Korean Journal of Mathematics
    • /
    • 제29권3호
    • /
    • pp.577-580
    • /
    • 2021
  • For a finite simplicial graph 𝚪, let G(𝚪) denote the right-angled Artin group on the complement graph of 𝚪. For path graphs Pk, cycle graphs C and complete bipartite graphs Kn,m, this article characterizes the embeddability of G(Kn,m) in G(Pk) and in G(C).

CLASSIFICATION OF REFLEXIBLE EDGE-TRANSITIVE EMBEDDINGS OF $K_{m,n}$ FOR ODD m, n

  • Kwon, Young-Soo
    • East Asian mathematical journal
    • /
    • 제25권4호
    • /
    • pp.533-541
    • /
    • 2009
  • In this paper, we classify reflexible edge-transitive embeddings of complete bipartite graphs $K_{m,n}$ for any odd positive integers m and n. As a result, for any odd m, n, it will be shown that there exists only one reflexible edge-transitive embedding of $K_{m,n}$ up to isomorphism.

EDGE COVERING COLORING OF NEARLY BIPARTITE GRAPHS

  • Wang Ji-Hui;Zhang Xia;Liu Guizhen
    • Journal of applied mathematics & informatics
    • /
    • 제22권1_2호
    • /
    • pp.435-440
    • /
    • 2006
  • Let G be a simple graph with vertex set V(G) and edge set E(G). A subset S of E(G) is called an edge cover of G if the subgraph induced by S is a spanning subgraph of G. The maximum number of edge covers which form a partition of E(G) is called edge covering chromatic number of G, denoted by X'c(G). It is known that for any graph G with minimum degree ${\delta},\;{\delta}-1{\le}X'c(G){\le}{\delta}$. If $X'c(G) ={\delta}$, then G is called a graph of CI class, otherwise G is called a graph of CII class. It is easy to prove that the problem of deciding whether a given graph is of CI class or CII class is NP-complete. In this paper, we consider the classification of nearly bipartite graph and give some sufficient conditions for a nearly bipartite graph to be of CI class.

THE BOUNDARIES OF DIPOLE GRAPHS AND THE COMPLETE BIPARTITE GRAPHS K2,n

  • Kim, Dongseok
    • 호남수학학술지
    • /
    • 제36권2호
    • /
    • pp.399-415
    • /
    • 2014
  • We study the Seifert surfaces of a link by relating the embeddings of graphs with induced graphs. As applications, we prove that every link L is the boundary of an oriented surface which is obtained from a graph embedding of a complete bipartite graph $K_{2,n}$, where all voltage assignments on the edges of $K_{2,n}$ are 0. We also provide an algorithm to construct such a graph diagram of a given link and demonstrate the algorithm by dealing with the links $4^2_1$ and $5_2$.

그래프 위에서의 Pebbling 수 (Pebbling Numbers on Graphs)

  • 천경아;김성숙
    • 자연과학논문집
    • /
    • 제12권1호
    • /
    • pp.1-9
    • /
    • 2002
  • 연결 그래프의 꼭지점에 자갈이 분포되어 있다고 하자. 한 꼭지점에서 두 개의 자갈을 취하여 한 개의 자갈만을 인접한 꼭지점에 보내는 이동을 할 때, 자갈이 분포될 수 있는 모든 경우에서 임의의 꼭지점에 한 개의 자갈을 보내기 위해 필요한 최소의 자갈의 수를 그 그래프의 pebbling number 라고 한다. 이 논문에서 Petersen Graph의 pebbling 수를 계산하였고 complete bipartite 그래프 $K_{m,n}$과 꼭지점의 수 h가 4개 이상인 complete 그래프의 categorical product 의 pebbling number가 (m+n)h 이 됨을 보였다.

  • PDF

Reconfiguring k-colourings of Complete Bipartite Graphs

  • Celaya, Marcel;Choo, Kelly;MacGillivray, Gary;Seyffarth, Karen
    • Kyungpook Mathematical Journal
    • /
    • 제56권3호
    • /
    • pp.647-655
    • /
    • 2016
  • Let H be a graph, and $k{\geq}{\chi}(H)$ an integer. We say that H has a cyclic Gray code of k-colourings if and only if it is possible to list all its k-colourings in such a way that consecutive colourings, including the last and the first, agree on all vertices of H except one. The Gray code number of H is the least integer $k_0(H)$ such that H has a cyclic Gray code of its k-colourings for all $k{\geq}k_0(H)$. For complete bipartite graphs, we prove that $k_0(K_{\ell},r)=3$ when both ${\ell}$ and r are odd, and $k_0(K_{\ell},r)=4$ otherwise.