DOI QR코드

DOI QR Code

Study for the Maximum Bipartite Subgraph Problem Using GRASP + Tabu Search

Maximum Bipartite Subgraph 문제를 위한 GRASP + Tabu Search 알고리즘 연구

  • Received : 2013.11.18
  • Accepted : 2014.01.09
  • Published : 2014.03.31

Abstract

Let G = (V, E) be a graph. Maximum Bipartite Subgraph Problem is to convert a graph G into a bipartite graph by removing minimum number of edges. This problem belongs to NP-complete; hence, in this research, we are suggesting a new metaheuristic algorithm which combines Tabu search and GRASP.

G = (V, E) 를 그래프라 하자. Maximum Bipartite Subgraph 문제는 주어진 그래프 G로부터 최소 개수의 간선을 제거함으로써 G 를 이분그래프로 변환시키는 문제이며 결합 최적화 문제들 중 대표적인 문제들 중의 하나로 알려 져 있다. 본 문제는 NP-complete 계열에 포함되는 문제로서 본 연구에서는 Tabu Search 및 GRASP 등을 조합한 새로운 메타휴리스틱 알고리즘을 제시하고자 한다.

Keywords

References

  1. R. M. Karp, "Reducibility among combinatorial problems," in Complexity of Computer Computations. New York: Plenum, pp.85-104. 1972.
  2. S. Even and Y. Shiloach, "NP-completeness of several arrangement problems," Dept. Computer Science, Technion, Haifa, Israel, Tech. Rep. 43, 1975.
  3. M. R. Garey, D. S. Johnson, and L. J. Stockmeyer, "Some simplified NP-complete graph problems," Theoretical Computer Science, Vol.1, pp.237-267, 1976. https://doi.org/10.1016/0304-3975(76)90059-1
  4. J. A. Bondy and S. C. Locke, "Largest bipartite subgraph in triangle-free graphs with maximum degree three," J. Graph Theory, Vol.10, pp.477-504, 1986. https://doi.org/10.1002/jgt.3190100407
  5. Kuo Chun Lee, Nobuo Funabiki, and Yoshiyasu Takefuji, "A parallel improvement algorithm for the bipartite subgraph problem", IEEE Transactions on Neural Networks, Vol.3, No.1, pp.139-145, 1992. https://doi.org/10.1109/72.105427
  6. Rong Long Wang, Zheng Tang, and Qi Ping Cao, "A hopfield network learning method for bipartite subgraph problem", IEEE Transactions on Neural Networks, Vol.15, No.6, 2004.
  7. Fred Glover, "Future paths for integer programming and links to artificial intelligence", Computers and Operations Research 13(5), pp.533-549, 1986. https://doi.org/10.1016/0305-0548(86)90048-1
  8. T.A. Feo and M.G.C. Resende, "A probabilistic heuristic for a computationally difficult set covering problem", Operations Research Letters, 8, pp.67-71, 1989. https://doi.org/10.1016/0167-6377(89)90002-3
  9. P. Festa, P. M. Pardalos, M. G. C. Resende, and C. C. Ribeiro, "Randomized heuristics for the max-cut problem," Optimization Methods and Software, 7, pp.1033-1058, 2002.
  10. DIMACS: http://dimacs.rutgers.edu/Challenges/
  11. SteinLab: http://steinlib.zib.de/steinlib.php
  12. I. Rosseti, M. P. de Aragão, C. C. Ribeiro, E. Uchoa, and R. F. Werneck, New benchmark instances for the steiner problem in graphs, In Extended Abstracts of the 4th Metaheuristics International Conference, pp.557-561, Proto, Portugal, 2001.