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Abstract. Let H be a graph, and k ≥ χ(H) an integer. We say that H has a cyclic
Gray code of k-colourings if and only if it is possible to list all its k-colourings in such a
way that consecutive colourings, including the last and the first, agree on all vertices of
H except one. The Gray code number of H is the least integer k0(H) such that H has a
cyclic Gray code of its k-colourings for all k ≥ k0(H). For complete bipartite graphs, we
prove that k0(K`,r) = 3 when both ` and r are odd, and k0(K`,r) = 4 otherwise.

1. Introduction

Let H be a graph and k a positive integer. The k-colouring graph of H, Gk(H),
has as its vertices the proper k-colourings of H, any two of which are joined by
an edge if and only if they agree on all but one vertex of H. When this graph is
connected, any given k-colouring can be reconfigured into any other via a sequence
of recolourings which each change the colour of exactly one vertex. When it is
hamiltonian, there is a cyclic list that contains all of the k-colourings of H and
consecutive elements of the list differ in the colour of exactly one vertex.
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The Gray code number of H, denoted k0(H), is defined to be the smallest integer
k such that Gk(H) has a Hamilton cycle for all k ≥ k0(H); that is, k0(H) is the least
integer such that there exists a cyclic Gray code of k-colourings of H. It is shown in
[7] that for any simple graph H, k0(H) is well-defined; i.e., for k ≥ col(G)+2, where
col(G) denotes the colouring number of G, it is always possible to enumerate all
proper k-colourings of H in such a way that any two successive colourings, including
the first and the last, differ on only one vertex. A discussion of the origins of the
Gray code number can be found in [7].

For our purposes, a proper k-colouring of a graph H is a function f : V (H) −→
{1, 2, . . . , k} such that if xy ∈ E(H), f(x) 6= f(y). We refer to the function values
as the colours of the vertices, and for convenience use the term k-colouring (since
we only consider proper k-colourings). This terminology is consistent with Bondy
and Murty [2], and we refer the reader to that text for notation and terminology
not defined here.

Choo and MacGillivray [7] establish Gray code numbers for various classes of
graphs. For complete graphs, k0(K1) = 3 and k0(Kn) = n + 1 when n ≥ 2. For
cycles, k0(Cn) = 4 for n ≥ 3. Any tree T satisfies k0(T ) = 3, except if T is a
star with an odd number (at least three) of vertices, in which case k0(T ) = 4.
The results here extend the work presented in [7] in that we determine the Gray
code numbers of complete bipartite graphs, of which stars are a special case. The
general case of bipartite graphs that are not complete remains largely unexplored.
Connectivity and hamiltonicity of the k-colouring graphs of complete multipartite
graphs is addressed in [1].

Connectivity of k-colouring graphs arises in random sampling of k-colourings,
and approximating the number of k-colourings (see [8, 12, 13]). Neither the 2-
colouring graph of a bipartite graph nor the 3-colouring graph of a 3-chromatic
graph is ever connected, but for each k ≥ 4 there exist k-chromatic graphs for
which the k-colouring graph is connected, and others for which it is disconnected
[4, 5]. On the other hand, for any graph H, the k-colouring graph is connected for
all k ≥ col(H) + 1 [8]. While it is Polynomial to decide if the 3-colouring graph of a
bipartite graph is connected [3], it is NP-complete to decide if two given colourings
belong to the same component of such a graph [6]. In [3] it is shown that the
diameter of any component of the 3-colouring graph of a bipartite graph is bounded
by a quadratic function of the number of vertices, but for each k ≥ 4 there exist
bipartite graphs on n vertices for which the diameter of some component of the
k-colouring graph is exponential in n; for each k ≥ 4 it is PSPACE complete to
decide if two given k-colourings belong to the same component of the k-colouring
graph.

Other k-colouring graphs have also been considered. Viewing a k-colouring of
H as a partition of V (H) with at most k cells leads to the k-Bell colour graph,
while viewing it as a partition into exactly k parts leads to the k-Stirling colour
graph. Every graph on n vertices has a hamiltonian n-Bell colour graph, and for
each k ≥ 4, the k-Stirling colour graph of a tree is hamiltonian [9]. The canonical
k-colouring graph of H with respect to a fixed ordering Π of V (H) is the subgraph
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of Gk(H) obtained by first defining two k-colourings to be equivalent if they give
rise to the same partition of V (H), and then taking the subgraph induced by the set
of equivalence class representatives which are lexicographically least with respect
to Π. For every tree T there exists an ordering Π of the vertices such that the
canonical k-colouring graph of T with respect to Π is Hamiltonian for all k ≥ 3
[10]. For any graph H and any vertex ordering Π, the canonical k-colouring graph
of H with respect to Π is a spanning subgraph of the k-Bell colour graph of H.
Finally, connectivity of the graph of list-L(2, 1)-labellings – proper colourings with
some additional restrictions – has recently been studied in [11].

2. Gray Code Numbers of Complete Bipartite Graphs

Let K`,r be a complete bipartite graph with bipartition (L,R), where the sets L
and R are L = {p1, p2, . . . , p`} and R = {q1, q2, . . . , qr}, respectively. A colouring
f of K`,r with f(pi) = ai, 1 ≤ i ≤ ` and f(qi) = bi, 1 ≤ i ≤ r is denoted
〈a1a2 . . . a`|b1b2 . . . br〉.

We begin by establishing a lower bound on k0(K`,r).

Theorem 2.1. For positive integers ` and r, G2(K`,r) is not hamiltonian, and
G3(K`,r) is hamiltonian if and only if `, r are both odd.

Proof. A 2-colouring of K`,r is completely determined by the colour of any one of its
vertices, implying that |V (G2(K`,r))| = 2. Moreover, these two 2-colourings cannot
be joined by an edge since the colours of all vertices of K`,r must be changed to
obtain one 2-colouring from the other. Since K`,r has a least two vertices, G2(K`,r)
is not connected and hence not hamiltonian.

Notice that every 3-colouring of K`,r leaves at least one of L,R monochromatic,
so for each j, 1 ≤ j ≤ 3, we define Lj to be the subgraph of G3(H) induced by
3-colourings f in which f(p) = j for all p ∈ L; Rj is defined analogously. Thus
every vertex of G3(H) belongs to (at least) one of L1, L2, L3, R1, R2, R3.

The colourings in L1 have all vertices of L coloured with 1 and the vertices of R
coloured with 2 and 3. Thus each colouring in L1 can be thought of as binary string
of length r over {2, 3}, implying that L1 is isomorphic to the r-dimensional cube, Qr.
It is routine to prove (and also follows from a result in [14]) that Qr has a Hamilton
path between 00 . . . 0︸ ︷︷ ︸

r

and 11 . . . 1︸ ︷︷ ︸
r

if and only if r is odd. Thus if r is odd, there is

a Hamilton path PL,1 in L1 between 〈11 . . . 1|22 . . . 2〉 and 〈11 . . . 1|33 . . . 3〉. If ` is
also odd, then R3 ∼= Q`, so R3 has a Hamilton path PR,3 between 〈11 . . . 1|33 . . . 3〉
and 〈22 . . . 2|33 . . . 3〉. Analogously,

• L2 has a Hamilton path PL,2 between 〈22 . . . 2|33 . . . 3〉 and 〈22 . . . 2|11 . . . 1〉;

• R1 has a Hamilton path PR,1 between 〈22 . . . 2|11 . . . 1〉 and 〈33 . . . 3|11 . . . 1〉;

• L3 has a Hamilton path PL,3 between 〈33 . . . 3|11 . . . 1〉 and 〈33 . . . 3|22 . . . 2〉;

• R2 has a Hamilton path PR,2 between 〈33 . . . 3|22 . . . 2〉 and 〈11 . . . 1|22 . . . 2〉.
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(1, 2)

v
Path to (1, 2), odd n.

(1, n)

v
Path to (1, n), n odd.

(1, 2)

v
Path to (1, 2), even n.

(1, n)

v
Path to (1, n), even n.

Figure 1: Hamilton paths in the graph Jn of Lemma 2.2 when n = 7 and n = 8.
Not all edges are shown.

It follows that
PL,1 ∪ PR,3 ∪ PL,2 ∪ PR,1 ∪ PL,3 ∪ PR,2

is a Hamilton cycle of G3(K`,r).
Conversely, if r is even, then G3(K`,r) is not hamiltonian. The two-vertex

set {〈11 . . . 1|22 . . . 2〉 , 〈11 . . . 1|33 . . . 3〉} forms a cut of G3(K`,r), since one must
encounter at least one of these two vertices before leaving or entering L1. Therefore,
a Hamilton cycle of G3(K`,r) must contain a Hamilton path of L1 that starts and
ends at these two vertices. Since r is even, L1 ∼= Qr contains no such Hamilton
path, and thus G3(K`,r) is not hamiltonian. �

Theorem 2.1 implies that if `, r ≥ 1 and at least one of these is even, then
k0(K`,r) ≥ 4. It remains to show that this inequality is an equality.

Consider the complete graph Kn with vertex set {1, 2, . . . , n}, and the cartesian
product Kn�Kn with vertex set {(i, j) | 1 ≤ i, j ≤ n}. Denote by Jn the graph
obtained from Kn�Kn by deleting the set of vertices {(i, i) | 1 ≤ i ≤ n− 1}.
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Lemma 2.2. For n ≥ 3, Jn has a Hamilton path between (n, n) and any vertex of
Jn − (n, n).

Proof. Let v = (n, n). In Figure 1, we depict Hamilton paths between v and (1, 2)
when n is odd and when n is even, and Hamilton paths between v and (1, n) when
n is even and when n is odd. The lemma is proved by showing that for every
w ∈ V (Jn), w 6= v, there is an automorphism of Jn that fixes v and maps w to
either (1, 2) or (1, n).

For any π ∈ Sn, define φπ : V (Jn)→ V (Jn) by

φπ(a, b) = (π(a), π(b)).

If π(n) = n, then it is straightforward to see that φπ is an automorphism of Jn.
Suppose w = (w1, w2) ∈ V (Jn) is such that neither w1 nor w2 is equal to n.

Choose π = (1 w1)(2 w2), so that φπ is an automorphism of Jn. Then

φπ(w) = (π(w1), π(w2)) = (1, 2),

and hence Jn has a Hamilton path between v and w. If w = (w1, n), then choosing
π = (1 w1) again ensures that φπ is an automorphism of Jn, and

φπ(w) = (π(w1), π(n)) = (1, n);

i.e., Jn has a Hamilton path between v and w. Finally, suppose w = (n,w2), and
let τ : V (Jn)→ V (Jn) be the automorphism of Jn in which

τ(a, b) = (b, a).

Choosing π = (1 w2) ensures that φπ ◦ τ is an automorphism of Jn in which

φπ ◦ τ(n,w2) = φπ(w2, n) = (π(w2), π(n)) = (1, n).

Again, there is a Hamilton path in Jn between v and w. �

We now use Lemma 2.2 to prove our main theorem.

Theorem 2.3. Let 1 ≤ ` ≤ r and let k ≥ 4. Then Gk(K`,r) is hamiltonian.

Proof. The proof is by induction on `. When ` = 1, the graph K`,r is a star, and it
is known [7, Corollary 5.6] that Gk(K1,r) is hamiltonian for k ≥ 4.

For ` ≥ 2, let K`,r have bipartition (L,R) with u ∈ L and v ∈ R, and let H de-
note the graph obtained fromK`,r by deleting u and v. ThenH ∼= K`−1,r−1, and has
bipartition (L′, R′) where L′ = L\{u} and R′ = R\{v}. Suppose f0, f1, . . . fN−1, f0
is a Hamilton cycle in Gk(H). For 0 ≤ i ≤ N − 1, define Fi to be the subgraph of
Gk(K`,r) induced by the colourings that agree with fi on H. In what follows, the
subscripts of fi and Fi are taken modulo N . Let [Fi, Fi+1] denote the set of edges
that have one end in Fi and the other end in Fi+1.
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Suppose i ∈ {0, 1, . . . , N − 1}. A colouring ti ∈ V (Fi) is called a sink if it is
incident to an edge in [Fi, Fi+1]. If ti is a sink, then it is adjacent to exactly one
colouring in V (Fi+1).

Claim. For any si ∈ V (Fi), there exists a sink ti 6= si, and a Hamilton path in Fi
between si and ti.

Proof. Assume that the set of all colours is C := {1, 2, . . . , k}. Let U`(i) and Ur(i)
be the sets of colours used in L′ and R′, respectively, under the colouring fi. Then
A`(i) := C \Ur(i) and Ar(i) := C \U`(i) are the sets of colours available for u and
v, respectively, to extend fi to a colouring in Fi.

Since only one vertex of H changes colour between fi and fi+1, at least one of
the equalities U`(i+1) = U`(i) or Ur(i+1) = Ur(i) holds, implying that Ar(i+1) =
Ar(i) or A`(i + 1) = A`(i), respectively. Without loss of generality, assume that
Ar(i+ 1) = Ar(i).

Define αi = |A`(i)|, βi = |A`(i)|, and let A`(i) = {x1, x2, . . . , xαi
} and Ar(i) =

{y1, y2, . . . , yβi}. If A`(i + 1) 6⊇ A`(i), then the colour change from fi to fi+1
introduces a new colour to R′, i.e., there exists a colour xj ∈ Ur(i + 1) \ Ur(i).
Since only one vertex of H changes colour between fi and fi+1, xj is unique and
we may assume, without loss of generality, that A`(i) \A`(i+ 1) = {x1}, and hence
x1 ∈ Ur(i + 1) \ Ur(i). It follows that if a colouring ti ∈ V (Fi) is not a sink, then
ti(u) = x1.

Let di := |A`(i) ∩Ar(i)| be the number of colours available to both u and v
when extending fi to a colouring in Fi. Then di < min{αi, βi} since A`(i), Ar(i)
each contains colours not found in the other, namely, the colours used in Ur(i),
U`(i), respectively. Assume xj = yj for all j, 1 ≤ j ≤ di.

If di = 0, then all colours of C are used in fi and {U`(i), Ur(i)} is a partition
of C. It follows that Ur(i + 1) ⊆ Ur(i), and hence A`(i) ⊆ A`(i + 1). Since
Ar(i) = Ar(i+ 1), every colouring in V (Fi) is a sink. In this case, Fi ∼= Kαi

�Kβi
;

since αi + βi ≥ 4, Fi is hamiltonian. We obtain a Hamilton path with si ∈ V (Fi)
as one end by deleting an edge incident to si in an arbitrary Hamilton cycle of Fi.

Now suppose di ≥ 1; then αi ≥ 2 and βi ≥ 2. Let si ∈ V (Fi). In what follows,
we construct a Hamilton cycle in Fi so that on the Hamilton cycle, si is adjacent to
a sink ti. The subsequent deletion of the edge siti results in the required Hamilton
path.

First consider the case when αi = 2. Then di = 1, x1 = y1, and βi ≥ 3 (since
k ≥ 4 and A`(i)∪Ar(i) = {1, 2, . . . , k}). If si(v) 6= y1, then we may assume without
loss of generality that y2 = si(v). Figure 2 shows a Hamilton cycle in Fi when
αi = 2 and βi = 7, where the hollow vertices represent sinks. This Hamilton cycle
generalizes to arbitrary βi ≥ 3. Notice that if si(v) = y1 (recall that y1 = x1), then
si(u) = x2; otherwise, si(v) = y2. In either case, si is adjacent to a hollow vertex
(sink) ti on the Hamilton cycle.

Now suppose αi ≥ 3. Figures 3 and 4 show Hamilton cycles in Fi when αi = 4
and βi = 7, 6, respectively; again, the hollow vertices are sinks, and the Hamilton
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x1

x2
Colour of u

x1 y2 y3 y4 y5 y6 y7

Colour of v

Figure 2: di = 1 and αi = 2.

x1

x2

x3

x4

Colour of u

x1 x2 x3 y4 y5 y6 y7

Colour of v

Figure 3: di = 3, αi = 4, and βi = 7.

x1

x2

x3

x4

Colour of u

x1 x2 x3 y4 y5 y6

Colour of v

Figure 4: di = 3, αi = 4, and βi = 6.
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cycles generalize to arbitrary αi and βi odd/even, respectively. Notice that any
si ∈ V (Fi) is adjacent to a hollow vertex (sink) ti on the Hamilton cycle. �

We now describe a Hamilton cycle of Gk(K`,r) for r ≥ ` ≥ 2. Choose f0 =
〈11 . . . 1︸ ︷︷ ︸

`−1

| 22 . . . 2︸ ︷︷ ︸
r−1

〉; since r ≥ ` ≥ 2, 1 6∈ Ur(1) and 2 6∈ U`(1). Thus 〈11 . . . 1︸ ︷︷ ︸
`

| 22 . . . 2︸ ︷︷ ︸
r

〉

is a sink in V (F0), so we define t0 = 〈11 . . . 1︸ ︷︷ ︸
`

| 22 . . . 2︸ ︷︷ ︸
r

〉.

For 1 ≤ i ≤ N − 2, define si ∈ V (Fi) to be the vertex adjacent to ti−1. By
our earlier claim, there is a Hamilton path in Fi between si and a sink ti. Suppose
sN−1 is the colouring in FN−1 adjacent to tN−2. Observe that all vertices of FN−1
are sinks since the colours used in f0 are used in fN−1. Thus the Hamilton cycle in
FN−1 (whose existence is guaranteed in the proof of the claim) offers two choices
for tN−1: the two colourings adjacent to sN−1 in the Hamilton cycle. Choose tN−1
so that it is not adjacent to t0, and let s0 be the colouring in F0 adjacent to tN−1.
This choice guarantees that s0 6= t0. Since F0 is isomorphic to the graph Jn in
Lemma 2.2 with n = k−1, it follows from that lemma that F0 contains a Hamilton
path between s0 and t0. The union of the Hamilton paths contained in the union of
the Fi, 0 ≤ i ≤ n− 1, along with the edges tisi+1, 0 ≤ i ≤ n− 1, yields the required
Hamilton cycle.
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