• Title/Summary/Keyword: complete bipartite

Search Result 31, Processing Time 0.027 seconds

Study for the Maximum Bipartite Subgraph Problem Using GRASP + Tabu Search (Maximum Bipartite Subgraph 문제를 위한 GRASP + Tabu Search 알고리즘 연구)

  • Han, Keunhee;Kim, Chansoo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.3
    • /
    • pp.119-124
    • /
    • 2014
  • Let G = (V, E) be a graph. Maximum Bipartite Subgraph Problem is to convert a graph G into a bipartite graph by removing minimum number of edges. This problem belongs to NP-complete; hence, in this research, we are suggesting a new metaheuristic algorithm which combines Tabu search and GRASP.

EVERY LINK IS A BOUNDARY OF A COMPLETE BIPARTITE GRAPH K2,n

  • Jang, Yongjun;Jeon, Sang-Min;Kim, Dongseok
    • Korean Journal of Mathematics
    • /
    • v.20 no.4
    • /
    • pp.403-414
    • /
    • 2012
  • A voltage assignment on a graph was used to enumerate all possible 2-cell embeddings of a graph onto surfaces. The boundary of the surface which is obtained from 0 voltage on every edges of a very special diagram of a complete bipartite graph $K_{m,n}$ is surprisingly the ($m,n$) torus link. In the present article, we prove that every link is the boundary of a complete bipartite multi-graph $K_{m,n}$ for which voltage assignments are either -1 or 1 and that every link is the boundary of a complete bipartite graph $K_{2,n}$ for which voltage assignments are either -1, 0 or 1 where edges in the diagram of graphs may be linked but not knotted.

BIPACKING A BIPARTITE GRAPH WITH GIRTH AT LEAST 12

  • Wang, Hong
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.25-37
    • /
    • 2019
  • Let G be a bipartite graph with (X, Y ) as its bipartition. Let B be a complete bipartite graph with a bipartition ($V_1$, $V_2$) such that $X{\subseteq}V_1$ and $Y{\subseteq}V_2$. A bi-packing of G in B is an injection ${\sigma}:V(G){\rightarrow}V(B)$ such that ${\sigma}(X){\subseteq}V_1$, ${\sigma}(Y){\subseteq}V_2$ and $E(G){\cap}E({\sigma}(G))={\emptyset}$. In this paper, we show that if G is a bipartite graph of order n with girth at least 12, then there is a complete bipartite graph B of order n + 1 such that there is a bi-packing of G in B. We conjecture that the same conclusion holds if the girth of G is at least 8.

H-V -SUPER MAGIC DECOMPOSITION OF COMPLETE BIPARTITE GRAPHS

  • KUMAR, SOLOMON STALIN;MARIMUTHU, GURUSAMY THEVAR
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.3
    • /
    • pp.313-325
    • /
    • 2015
  • An H-magic labeling in a H-decomposable graph G is a bijection $f:V(G){\cup}E(G){\rightarrow}\{1,2,{\cdots},p+q\}$ such that for every copy H in the decomposition, $\sum{_{{\upsilon}{\in}V(H)}}\;f(v)+\sum{_{e{\in}E(H)}}\;f(e)$ is constant. f is said to be H-V -super magic if f(V(G))={1,2,...,p}. In this paper, we prove that complete bipartite graphs $K_{n,n}$ are H-V -super magic decomposable where $$H{\sim_=}K_{1,n}$$ with $n{\geq}1$.

RIGHT-ANGLED ARTIN GROUPS ON PATH GRAPHS, CYCLE GRAPHS AND COMPLETE BIPARTITE GRAPHS

  • Lee, Eon-Kyung;Lee, Sang-Jin
    • Korean Journal of Mathematics
    • /
    • v.29 no.3
    • /
    • pp.577-580
    • /
    • 2021
  • For a finite simplicial graph 𝚪, let G(𝚪) denote the right-angled Artin group on the complement graph of 𝚪. For path graphs Pk, cycle graphs C and complete bipartite graphs Kn,m, this article characterizes the embeddability of G(Kn,m) in G(Pk) and in G(C).

CLASSIFICATION OF REFLEXIBLE EDGE-TRANSITIVE EMBEDDINGS OF $K_{m,n}$ FOR ODD m, n

  • Kwon, Young-Soo
    • East Asian mathematical journal
    • /
    • v.25 no.4
    • /
    • pp.533-541
    • /
    • 2009
  • In this paper, we classify reflexible edge-transitive embeddings of complete bipartite graphs $K_{m,n}$ for any odd positive integers m and n. As a result, for any odd m, n, it will be shown that there exists only one reflexible edge-transitive embedding of $K_{m,n}$ up to isomorphism.

EDGE COVERING COLORING OF NEARLY BIPARTITE GRAPHS

  • Wang Ji-Hui;Zhang Xia;Liu Guizhen
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.435-440
    • /
    • 2006
  • Let G be a simple graph with vertex set V(G) and edge set E(G). A subset S of E(G) is called an edge cover of G if the subgraph induced by S is a spanning subgraph of G. The maximum number of edge covers which form a partition of E(G) is called edge covering chromatic number of G, denoted by X'c(G). It is known that for any graph G with minimum degree ${\delta},\;{\delta}-1{\le}X'c(G){\le}{\delta}$. If $X'c(G) ={\delta}$, then G is called a graph of CI class, otherwise G is called a graph of CII class. It is easy to prove that the problem of deciding whether a given graph is of CI class or CII class is NP-complete. In this paper, we consider the classification of nearly bipartite graph and give some sufficient conditions for a nearly bipartite graph to be of CI class.

THE BOUNDARIES OF DIPOLE GRAPHS AND THE COMPLETE BIPARTITE GRAPHS K2,n

  • Kim, Dongseok
    • Honam Mathematical Journal
    • /
    • v.36 no.2
    • /
    • pp.399-415
    • /
    • 2014
  • We study the Seifert surfaces of a link by relating the embeddings of graphs with induced graphs. As applications, we prove that every link L is the boundary of an oriented surface which is obtained from a graph embedding of a complete bipartite graph $K_{2,n}$, where all voltage assignments on the edges of $K_{2,n}$ are 0. We also provide an algorithm to construct such a graph diagram of a given link and demonstrate the algorithm by dealing with the links $4^2_1$ and $5_2$.

Pebbling Numbers on Graphs (그래프 위에서의 Pebbling 수)

  • Chun, Kyung-Ah;Kim, Sung-Sook
    • The Journal of Natural Sciences
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2002
  • Let G be a connected graph on n vertices. The pebbling number of graph G, f(G), is the least m such that, however m pebbles are placed on the vertices of G, we can move a pebble to any vertex by a sequence of moves, each move taking two pebbles off one vertex and placing one on an adjacent vertex. In this paper, we compute the pebbling number of the Petersen Graph. We also show that the pebbling number of the categorical Product G.H is (m+n)h where G is the complete bipartite graph $K_{m,n}$ and H is the complete graph with $h(\geq4)$ vertices.

  • PDF

Reconfiguring k-colourings of Complete Bipartite Graphs

  • Celaya, Marcel;Choo, Kelly;MacGillivray, Gary;Seyffarth, Karen
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.3
    • /
    • pp.647-655
    • /
    • 2016
  • Let H be a graph, and $k{\geq}{\chi}(H)$ an integer. We say that H has a cyclic Gray code of k-colourings if and only if it is possible to list all its k-colourings in such a way that consecutive colourings, including the last and the first, agree on all vertices of H except one. The Gray code number of H is the least integer $k_0(H)$ such that H has a cyclic Gray code of its k-colourings for all $k{\geq}k_0(H)$. For complete bipartite graphs, we prove that $k_0(K_{\ell},r)=3$ when both ${\ell}$ and r are odd, and $k_0(K_{\ell},r)=4$ otherwise.