• Title/Summary/Keyword: bipartite graphs

Search Result 53, Processing Time 0.022 seconds

THE BOUNDARIES OF DIPOLE GRAPHS AND THE COMPLETE BIPARTITE GRAPHS K2,n

  • Kim, Dongseok
    • Honam Mathematical Journal
    • /
    • v.36 no.2
    • /
    • pp.399-415
    • /
    • 2014
  • We study the Seifert surfaces of a link by relating the embeddings of graphs with induced graphs. As applications, we prove that every link L is the boundary of an oriented surface which is obtained from a graph embedding of a complete bipartite graph $K_{2,n}$, where all voltage assignments on the edges of $K_{2,n}$ are 0. We also provide an algorithm to construct such a graph diagram of a given link and demonstrate the algorithm by dealing with the links $4^2_1$ and $5_2$.

MORE RELATIONS BETWEEN λ-LABELING AND HAMILTONIAN PATHS WITH EMPHASIS ON LINE GRAPH OF BIPARTITE MULTIGRAPHS

  • Zaker, Manouchehr
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.1
    • /
    • pp.119-139
    • /
    • 2022
  • This paper deals with the λ-labeling and L(2, 1)-coloring of simple graphs. A λ-labeling of a graph G is any labeling of the vertices of G with different labels such that any two adjacent vertices receive labels which differ at least two. Also an L(2, 1)-coloring of G is any labeling of the vertices of G such that any two adjacent vertices receive labels which differ at least two and any two vertices with distance two receive distinct labels. Assume that a partial λ-labeling f is given in a graph G. A general question is whether f can be extended to a λ-labeling of G. We show that the extension is feasible if and only if a Hamiltonian path consistent with some distance constraints exists in the complement of G. Then we consider line graph of bipartite multigraphs and determine the minimum number of labels in L(2, 1)-coloring and λ-labeling of these graphs. In fact we obtain easily computable formulas for the path covering number and the maximum path of the complement of these graphs. We obtain a polynomial time algorithm which generates all Hamiltonian paths in the related graphs. A special case is the Cartesian product graph Kn☐Kn and the generation of λ-squares.

CLASSIFICATION OF REFLEXIBLE EDGE-TRANSITIVE EMBEDDINGS OF $K_{m,n}$ FOR ODD m, n

  • Kwon, Young-Soo
    • East Asian mathematical journal
    • /
    • v.25 no.4
    • /
    • pp.533-541
    • /
    • 2009
  • In this paper, we classify reflexible edge-transitive embeddings of complete bipartite graphs $K_{m,n}$ for any odd positive integers m and n. As a result, for any odd m, n, it will be shown that there exists only one reflexible edge-transitive embedding of $K_{m,n}$ up to isomorphism.

H-V -SUPER MAGIC DECOMPOSITION OF COMPLETE BIPARTITE GRAPHS

  • KUMAR, SOLOMON STALIN;MARIMUTHU, GURUSAMY THEVAR
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.3
    • /
    • pp.313-325
    • /
    • 2015
  • An H-magic labeling in a H-decomposable graph G is a bijection $f:V(G){\cup}E(G){\rightarrow}\{1,2,{\cdots},p+q\}$ such that for every copy H in the decomposition, $\sum{_{{\upsilon}{\in}V(H)}}\;f(v)+\sum{_{e{\in}E(H)}}\;f(e)$ is constant. f is said to be H-V -super magic if f(V(G))={1,2,...,p}. In this paper, we prove that complete bipartite graphs $K_{n,n}$ are H-V -super magic decomposable where $$H{\sim_=}K_{1,n}$$ with $n{\geq}1$.

FORBIDDEN THETA GRAPH, BOUNDED SPECTRAL RADIUS AND SIZE OF NON-BIPARTITE GRAPHS

  • Shuchao Li;Wanting Sun;Wei Wei
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.5
    • /
    • pp.959-986
    • /
    • 2023
  • Zhai and Lin recently proved that if G is an n-vertex connected 𝜃(1, 2, r + 1)-free graph, then for odd r and n ⩾ 10r, or for even r and n ⩾ 7r, one has ${\rho}(G){\leq}{\sqrt{{\lfloor}{\frac{n^2}{4}}{\rfloor}}}$, and equality holds if and only if G is $K_{{\lceil}{\frac{n}{2}}{\rceil},{\lfloor}{\frac{n}{2}}{\rfloor}}$. In this paper, for large enough n, we prove a sharp upper bound for the spectral radius in an n-vertex H-free non-bipartite graph, where H is 𝜃(1, 2, 3) or 𝜃(1, 2, 4), and we characterize all the extremal graphs. Furthermore, for n ⩾ 137, we determine the maximum number of edges in an n-vertex 𝜃(1, 2, 4)-free non-bipartite graph and characterize the unique extremal graph.

ON CERTAIN HYPERPLANE ARRANGEMENTS AND COLORED GRAPHS

  • Song, Joungmin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.375-382
    • /
    • 2017
  • We exhibit a one-to-one correspondence between 3-colored graphs and subarrangements of certain hyperplane arrangements denoted ${\mathcal{J}}_n$, $n{\in}{\mathbb{N}}$. We define the notion of centrality of 3-colored graphs, which corresponds to the centrality of hyperplane arrangements. Via the correspondence, the characteristic polynomial ${\chi}{\mathcal{J}}_n$ of ${\mathcal{J}}_n$ can be expressed in terms of the number of central 3-colored graphs, and we compute ${\chi}{\mathcal{J}}_n$ for n = 2, 3.

ENUMERATION OF GRAPHS AND THE CHARACTERISTIC POLYNOMIAL OF THE HYPERPLANE ARRANGEMENTS 𝒥n

  • Song, Joungmin
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.5
    • /
    • pp.1595-1604
    • /
    • 2017
  • We give a complete formula for the characteristic polynomial of hyperplane arrangements ${\mathcal{J}}_n$ consisting of the hyperplanes $x_i+x_j=1$, $x_k=0$, $x_l=1$, $1{\leq}i$, j, k, $l{\leq}n$. The formula is obtained by associating hyperplane arrangements with graphs, and then enumerating central graphs via generating functions for the number of bipartite graphs of given order, size and number of connected components.

SIGNED A-POLYNOMIALS OF GRAPHS AND POINCARÉ POLYNOMIALS OF REAL TORIC MANIFOLDS

  • Seo, Seunghyun;Shin, Heesung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.467-481
    • /
    • 2015
  • Choi and Park introduced an invariant of a finite simple graph, called signed a-number, arising from computing certain topological invariants of some specific kinds of real toric manifolds. They also found the signed a-numbers of path graphs, cycle graphs, complete graphs, and star graphs. We introduce a signed a-polynomial which is a generalization of the signed a-number and gives a-, b-, and c-numbers. The signed a-polynomial of a graph G is related to the $Poincar\acute{e}$ polynomial $P_{M(G)}(z)$, which is the generating function for the Betti numbers of the real toric manifold M(G). We give the generating functions for the signed a-polynomials of not only path graphs, cycle graphs, complete graphs, and star graphs, but also complete bipartite graphs and complete multipartite graphs. As a consequence, we find the Euler characteristic number and the Betti numbers of the real toric manifold M(G) for complete multipartite graphs G.

VOLUME OF GRAPH POLYTOPES FOR THE PATH-STAR TYPE GRAPHS

  • Ju, Hyeong-Kwan;Seo, Soo-Jeong
    • Honam Mathematical Journal
    • /
    • v.38 no.1
    • /
    • pp.71-84
    • /
    • 2016
  • The aim of this work is to compute the volume of the graph polytope associated with various type of finite simple graphs composed of paths and stars. Recurrence relations are obtained using the recursive volume formula (RVF) which was introduced in Lee and Ju ([3]). We also discussed the relationship between the volume of the graph polytopes and the number of linear extensions of the associated posets for given bipartite graphs.

EDGE COVERING COLORING OF NEARLY BIPARTITE GRAPHS

  • Wang Ji-Hui;Zhang Xia;Liu Guizhen
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.435-440
    • /
    • 2006
  • Let G be a simple graph with vertex set V(G) and edge set E(G). A subset S of E(G) is called an edge cover of G if the subgraph induced by S is a spanning subgraph of G. The maximum number of edge covers which form a partition of E(G) is called edge covering chromatic number of G, denoted by X'c(G). It is known that for any graph G with minimum degree ${\delta},\;{\delta}-1{\le}X'c(G){\le}{\delta}$. If $X'c(G) ={\delta}$, then G is called a graph of CI class, otherwise G is called a graph of CII class. It is easy to prove that the problem of deciding whether a given graph is of CI class or CII class is NP-complete. In this paper, we consider the classification of nearly bipartite graph and give some sufficient conditions for a nearly bipartite graph to be of CI class.