DOI QR코드

DOI QR Code

FORBIDDEN THETA GRAPH, BOUNDED SPECTRAL RADIUS AND SIZE OF NON-BIPARTITE GRAPHS

  • Shuchao Li (Hubei Key Laboratory of Mathematical Science and Faculty of Mathematics and Statistics Central China Normal University) ;
  • Wanting Sun (Data Science Institute Shandong University) ;
  • Wei Wei (Center of Intelligent Computing and Applied Statistics School of Mathematics Physics and Statistics Shanghai University of Engineering Science)
  • Received : 2022.07.08
  • Accepted : 2023.07.12
  • Published : 2023.09.01

Abstract

Zhai and Lin recently proved that if G is an n-vertex connected 𝜃(1, 2, r + 1)-free graph, then for odd r and n ⩾ 10r, or for even r and n ⩾ 7r, one has ${\rho}(G){\leq}{\sqrt{{\lfloor}{\frac{n^2}{4}}{\rfloor}}}$, and equality holds if and only if G is $K_{{\lceil}{\frac{n}{2}}{\rceil},{\lfloor}{\frac{n}{2}}{\rfloor}}$. In this paper, for large enough n, we prove a sharp upper bound for the spectral radius in an n-vertex H-free non-bipartite graph, where H is 𝜃(1, 2, 3) or 𝜃(1, 2, 4), and we characterize all the extremal graphs. Furthermore, for n ⩾ 137, we determine the maximum number of edges in an n-vertex 𝜃(1, 2, 4)-free non-bipartite graph and characterize the unique extremal graph.

Keywords

Acknowledgement

The authors would like to express their sincere gratitude to the referee for his/her very careful reading of the paper and for insightful comments and valuable suggestions, which improved the presentation of this paper.

References

  1. R. Aharoni, N. Alon, and E. Berger, Eigenvalues of K1,k-free graphs and the connectivity of their independence complexes, J. Graph Theory 83 (2016), no. 4, 384-391. https://doi.org/10.1002/jgt.22004
  2. L. Babai and B. Guiduli, Spectral extrema for graphs: the Zarankiewicz problem, Electron. J. Combin. 16 (2009), no. 1, Research Paper 123, 8 pp. https://doi.org/10.37236/212
  3. R. B. Bapat, Graphs and Matrices, Universitext, Springer, London, 2010. https://doi.org/10.1007/978-1-84882-981-7
  4. M. Bataineh, Some extremal problems in graph theory, Ph.D. thesis, Curtin University of Technology, Australia, 2007.
  5. M. S. A. Bataineh, M. M. M. Jaradat, and I. Y. A. Al-Shboul, Edge-maximal graphs without θ5-graphs, Ars Combin. 124 (2016), 193-207.
  6. B. Bollobas and V. Nikiforov, Cliques and the spectral radius, J. Combin. Theory Ser. B 97 (2007), no. 5, 859-865. https://doi.org/10.1016/j.jctb.2006.12.002
  7. B. Bukh and M. Tait, Turan numbers of theta graphs, Combin. Probab. Comput. 29 (2020), no. 4, 495-507. https://doi.org/10.1017/s0963548320000012
  8. M. Z. Chen, A. M. Liu, and X. D. Zhang, Spectral extremal results with forbidding linear forests, Graphs Combin. 35 (2019), no. 1, 335-351. https://doi.org/10.1007/s00373-018-1996-3
  9. M. Z. Chen, A. M. Liu, and X. D. Zhang, On the spectral radius of graphs without a star forest, Discrete Math. 344 (2021), no. 4, Paper No. 112269, 12 pp. https://doi.org/10.1016/j.disc.2020.112269
  10. S. Cioaba, L. Feng, M. Tait, and X. D. Zhang, The maximum spectral radius of graphs without friendship subgraphs, Electron. J. Combin. 27 (2020), no. 4, Paper No. 4.22, 19 pp. https://doi.org/10.37236/9179
  11. P. Erdos and M. Simonovits, A limit theorem in graph theory, Studia Sci. Math. Hungar. 1 (1966), 51-57.
  12. P. Erdos and A. H. Stone, On the structure of linear graphs, Bull. Amer. Math. Soc. 52 (1946), 1087-1091. https://doi.org/10.1090/S0002-9904-1946-08715-7
  13. R. J. Faudree and M. Simonovits, On a class of degenerate extremal graph problems, Combinatorica 3 (1983), no. 1, 83-93. https://doi.org/10.1007/BF02579343
  14. Z. Furedi and D. S. Gunderson, Extremal numbers for odd cycles, Combin. Probab. Comput. 24 (2015), no. 4, 641-645. https://doi.org/10.1017/S0963548314000601
  15. Z. Furedi and M. Simonovits, The history of degenerate (bipartite) extremal graph problems, in Erdos centennial, 169-264, Bolyai Soc. Math. Stud., 25, Janos Bolyai Math. Soc., Budapest, 2013. https://doi.org/10.1007/978-3-642-39286-3_7
  16. H. Guo, H. Lin, and Y. Zhao, A spectral condition for the existence of a pentagon in non-bipartite graphs, Linear Algebra Appl. 627 (2021), 140-149. https://doi.org/10.1016/j.laa.2021.06.002
  17. M. M. M. Jaradat, M. S. A. Bataineh, and I. Y. A. Al-Shboul, Edge-maximal graphs without θ2k+1-graphs, AKCE Int. J. Graphs Comb. 11 (2014), no. 1, 57-65.
  18. R. Jia, Some extremal problems in graph theory, Ph.D. thesis, Curtin University of Technology, Australia, 1998.
  19. Y. Lan, Y. Shi, and Z.-X. Song, Extremal theta-free planar graphs, Discrete Math. 342 (2019), no. 12, 111610, 8 pp. https://doi.org/10.1016/j.disc.2019.111610
  20. S. Li and S. Miao, Characterizing P⩾2-factor and P⩾2-factor covered graphs with respect to the size or the spectral radius, Discrete Math. 344 (2021), no. 11, Paper No. 112588, 12 pp. https://doi.org/10.1016/j.disc.2021.112588
  21. S. Li, W. Sun, and Y. Yu, Adjacency eigenvalues of graphs without short odd cycles, Discrete Math. 345 (2022), no. 1, Paper No. 112633, 13 pp. https://doi.org/10.1016/j.disc.2021.112633
  22. H. Lin and B. Ning, A complete solution to the Cvetkovic-Rowlinson conjecture, J. Graph Theory 97 (2021), no. 3, 441-450. https://doi.org/10.1002/jgt.22667
  23. H. Lin, B. Ning, and B. Wu, Eigenvalues and triangles in graphs, Combin. Probab. Comput. 30 (2021), no. 2, 258-270. https://doi.org/10.1017/S0963548320000462
  24. H. Lu, Regular graphs, eigenvalues and regular factors, J. Graph Theory 69 (2012), no. 4, 349-355. https://doi.org/10.1002/jgt.20581
  25. W. Mantel, Problem 28, Wiskundige Opgaven 10 (1907), 60-61.
  26. V. Nikiforov, Some inequalities for the largest eigenvalue of a graph, Combin. Probab. Comput. 11 (2002), no. 2, 179-189. https://doi.org/10.1017/S0963548301004928
  27. V. Nikiforov, Bounds on graph eigenvalues. II, Linear Algebra Appl. 427 (2007), no. 2-3, 183-189. https://doi.org/10.1016/j.laa.2007.07.010
  28. V. Nikiforov, A spectral condition for odd cycles in graphs, Linear Algebra Appl. 428 (2008), no. 7, 1492-1498. https://doi.org/10.1016/j.laa.2007.09.029
  29. V. Nikiforov, A contribution to the Zarankiewicz problem, Linear Algebra Appl. 432 (2010), no. 6, 1405-1411. https://doi.org/10.1016/j.laa.2009.10.040
  30. V. Nikiforov, The spectral radius of graphs without paths and cycles of specified length, Linear Algebra Appl. 432 (2010), no. 9, 2243-2256. https://doi.org/10.1016/j.laa.2009.05.023
  31. V. Nikiforov, Some new results in extremal graph theory, in Surveys in combinatorics 2011, 141-181, London Math. Soc. Lecture Note Ser., 392, Cambridge Univ. Press, Cambridge, 2011.
  32. E. Nosal, Eigenvalues of graphs, Master's thesis, University of Calgary, 1970.
  33. M. Tait and J. Tobin, Three conjectures in extremal spectral graph theory, J. Combin. Theory Ser. B 126 (2017), 137-161. https://doi.org/10.1016/j.jctb.2017.04.006
  34. J. Verstraete and J. Williford, Graphs without theta subgraphs, J. Combin. Theory Ser. B 134 (2019), 76-87. https://doi.org/10.1016/j.jctb.2018.05.003
  35. H. S. Wilf, Spectral bounds for the clique and independence numbers of graphs, J. Combin. Theory Ser. B 40 (1986), no. 1, 113-117. https://doi.org/10.1016/0095-8956(86)90069-9
  36. B. Wu, E. Xiao, and Y. Hong, The spectral radius of trees on k pendant vertices, Linear Algebra Appl. 395 (2005), 343-349. https://doi.org/10.1016/j.laa.2004.08.025
  37. L. You, M. Yang, W. So, and W. Xi, On the spectrum of an equitable quotient matrix and its application, Linear Algebra Appl. 577 (2019), 21-40. https://doi.org/10.1016/j.laa.2019.04.013
  38. M. Zhai, L. Fang, and J. Shu, On the Turan number of theta graphs, Graphs Combin. 37 (2021), no. 6, 2155-2165. https://doi.org/10.1007/s00373-021-02342-5
  39. M. Zhai and H. Lin, Spectral extrema of graphs: forbidden hexagon, Discrete Math. 343 (2020), no. 10, 112028, 6 pp. https://doi.org/10.1016/j.disc.2020.112028
  40. M. Zhai and H. Lin, A strengthening of the spectral chromatic critical edge theorem: books and theta graphs, J. Graph Theory 102 (2023), no. 3, 502-520.
  41. M. Zhai, H. Lin, and J. Shu, Spectral extrema of graphs with fixed size: cycles and complete bipartite graphs, European J. Combin. 95 (2021), Paper No. 103322, 18 pp. https://doi.org/10.1016/j.ejc.2021.103322
  42. M. Zhai and B. Wang, Proof of a conjecture on the spectral radius of C4-free graphs, Linear Algebra Appl. 437 (2012), no. 7, 1641-1647. https://doi.org/10.1016/j.laa.2012.05.006