Acknowledgement
The authors would like to express their sincere gratitude to the referee for his/her very careful reading of the paper and for insightful comments and valuable suggestions, which improved the presentation of this paper.
References
- R. Aharoni, N. Alon, and E. Berger, Eigenvalues of K1,k-free graphs and the connectivity of their independence complexes, J. Graph Theory 83 (2016), no. 4, 384-391. https://doi.org/10.1002/jgt.22004
- L. Babai and B. Guiduli, Spectral extrema for graphs: the Zarankiewicz problem, Electron. J. Combin. 16 (2009), no. 1, Research Paper 123, 8 pp. https://doi.org/10.37236/212
- R. B. Bapat, Graphs and Matrices, Universitext, Springer, London, 2010. https://doi.org/10.1007/978-1-84882-981-7
- M. Bataineh, Some extremal problems in graph theory, Ph.D. thesis, Curtin University of Technology, Australia, 2007.
- M. S. A. Bataineh, M. M. M. Jaradat, and I. Y. A. Al-Shboul, Edge-maximal graphs without θ5-graphs, Ars Combin. 124 (2016), 193-207.
- B. Bollobas and V. Nikiforov, Cliques and the spectral radius, J. Combin. Theory Ser. B 97 (2007), no. 5, 859-865. https://doi.org/10.1016/j.jctb.2006.12.002
- B. Bukh and M. Tait, Turan numbers of theta graphs, Combin. Probab. Comput. 29 (2020), no. 4, 495-507. https://doi.org/10.1017/s0963548320000012
- M. Z. Chen, A. M. Liu, and X. D. Zhang, Spectral extremal results with forbidding linear forests, Graphs Combin. 35 (2019), no. 1, 335-351. https://doi.org/10.1007/s00373-018-1996-3
- M. Z. Chen, A. M. Liu, and X. D. Zhang, On the spectral radius of graphs without a star forest, Discrete Math. 344 (2021), no. 4, Paper No. 112269, 12 pp. https://doi.org/10.1016/j.disc.2020.112269
- S. Cioaba, L. Feng, M. Tait, and X. D. Zhang, The maximum spectral radius of graphs without friendship subgraphs, Electron. J. Combin. 27 (2020), no. 4, Paper No. 4.22, 19 pp. https://doi.org/10.37236/9179
- P. Erdos and M. Simonovits, A limit theorem in graph theory, Studia Sci. Math. Hungar. 1 (1966), 51-57.
- P. Erdos and A. H. Stone, On the structure of linear graphs, Bull. Amer. Math. Soc. 52 (1946), 1087-1091. https://doi.org/10.1090/S0002-9904-1946-08715-7
- R. J. Faudree and M. Simonovits, On a class of degenerate extremal graph problems, Combinatorica 3 (1983), no. 1, 83-93. https://doi.org/10.1007/BF02579343
- Z. Furedi and D. S. Gunderson, Extremal numbers for odd cycles, Combin. Probab. Comput. 24 (2015), no. 4, 641-645. https://doi.org/10.1017/S0963548314000601
- Z. Furedi and M. Simonovits, The history of degenerate (bipartite) extremal graph problems, in Erdos centennial, 169-264, Bolyai Soc. Math. Stud., 25, Janos Bolyai Math. Soc., Budapest, 2013. https://doi.org/10.1007/978-3-642-39286-3_7
- H. Guo, H. Lin, and Y. Zhao, A spectral condition for the existence of a pentagon in non-bipartite graphs, Linear Algebra Appl. 627 (2021), 140-149. https://doi.org/10.1016/j.laa.2021.06.002
- M. M. M. Jaradat, M. S. A. Bataineh, and I. Y. A. Al-Shboul, Edge-maximal graphs without θ2k+1-graphs, AKCE Int. J. Graphs Comb. 11 (2014), no. 1, 57-65.
- R. Jia, Some extremal problems in graph theory, Ph.D. thesis, Curtin University of Technology, Australia, 1998.
- Y. Lan, Y. Shi, and Z.-X. Song, Extremal theta-free planar graphs, Discrete Math. 342 (2019), no. 12, 111610, 8 pp. https://doi.org/10.1016/j.disc.2019.111610
- S. Li and S. Miao, Characterizing P⩾2-factor and P⩾2-factor covered graphs with respect to the size or the spectral radius, Discrete Math. 344 (2021), no. 11, Paper No. 112588, 12 pp. https://doi.org/10.1016/j.disc.2021.112588
- S. Li, W. Sun, and Y. Yu, Adjacency eigenvalues of graphs without short odd cycles, Discrete Math. 345 (2022), no. 1, Paper No. 112633, 13 pp. https://doi.org/10.1016/j.disc.2021.112633
- H. Lin and B. Ning, A complete solution to the Cvetkovic-Rowlinson conjecture, J. Graph Theory 97 (2021), no. 3, 441-450. https://doi.org/10.1002/jgt.22667
- H. Lin, B. Ning, and B. Wu, Eigenvalues and triangles in graphs, Combin. Probab. Comput. 30 (2021), no. 2, 258-270. https://doi.org/10.1017/S0963548320000462
- H. Lu, Regular graphs, eigenvalues and regular factors, J. Graph Theory 69 (2012), no. 4, 349-355. https://doi.org/10.1002/jgt.20581
- W. Mantel, Problem 28, Wiskundige Opgaven 10 (1907), 60-61.
- V. Nikiforov, Some inequalities for the largest eigenvalue of a graph, Combin. Probab. Comput. 11 (2002), no. 2, 179-189. https://doi.org/10.1017/S0963548301004928
- V. Nikiforov, Bounds on graph eigenvalues. II, Linear Algebra Appl. 427 (2007), no. 2-3, 183-189. https://doi.org/10.1016/j.laa.2007.07.010
- V. Nikiforov, A spectral condition for odd cycles in graphs, Linear Algebra Appl. 428 (2008), no. 7, 1492-1498. https://doi.org/10.1016/j.laa.2007.09.029
- V. Nikiforov, A contribution to the Zarankiewicz problem, Linear Algebra Appl. 432 (2010), no. 6, 1405-1411. https://doi.org/10.1016/j.laa.2009.10.040
- V. Nikiforov, The spectral radius of graphs without paths and cycles of specified length, Linear Algebra Appl. 432 (2010), no. 9, 2243-2256. https://doi.org/10.1016/j.laa.2009.05.023
- V. Nikiforov, Some new results in extremal graph theory, in Surveys in combinatorics 2011, 141-181, London Math. Soc. Lecture Note Ser., 392, Cambridge Univ. Press, Cambridge, 2011.
- E. Nosal, Eigenvalues of graphs, Master's thesis, University of Calgary, 1970.
- M. Tait and J. Tobin, Three conjectures in extremal spectral graph theory, J. Combin. Theory Ser. B 126 (2017), 137-161. https://doi.org/10.1016/j.jctb.2017.04.006
- J. Verstraete and J. Williford, Graphs without theta subgraphs, J. Combin. Theory Ser. B 134 (2019), 76-87. https://doi.org/10.1016/j.jctb.2018.05.003
- H. S. Wilf, Spectral bounds for the clique and independence numbers of graphs, J. Combin. Theory Ser. B 40 (1986), no. 1, 113-117. https://doi.org/10.1016/0095-8956(86)90069-9
- B. Wu, E. Xiao, and Y. Hong, The spectral radius of trees on k pendant vertices, Linear Algebra Appl. 395 (2005), 343-349. https://doi.org/10.1016/j.laa.2004.08.025
- L. You, M. Yang, W. So, and W. Xi, On the spectrum of an equitable quotient matrix and its application, Linear Algebra Appl. 577 (2019), 21-40. https://doi.org/10.1016/j.laa.2019.04.013
- M. Zhai, L. Fang, and J. Shu, On the Turan number of theta graphs, Graphs Combin. 37 (2021), no. 6, 2155-2165. https://doi.org/10.1007/s00373-021-02342-5
- M. Zhai and H. Lin, Spectral extrema of graphs: forbidden hexagon, Discrete Math. 343 (2020), no. 10, 112028, 6 pp. https://doi.org/10.1016/j.disc.2020.112028
- M. Zhai and H. Lin, A strengthening of the spectral chromatic critical edge theorem: books and theta graphs, J. Graph Theory 102 (2023), no. 3, 502-520.
- M. Zhai, H. Lin, and J. Shu, Spectral extrema of graphs with fixed size: cycles and complete bipartite graphs, European J. Combin. 95 (2021), Paper No. 103322, 18 pp. https://doi.org/10.1016/j.ejc.2021.103322
- M. Zhai and B. Wang, Proof of a conjecture on the spectral radius of C4-free graphs, Linear Algebra Appl. 437 (2012), no. 7, 1641-1647. https://doi.org/10.1016/j.laa.2012.05.006