DOI QR코드

DOI QR Code

MORE RELATIONS BETWEEN λ-LABELING AND HAMILTONIAN PATHS WITH EMPHASIS ON LINE GRAPH OF BIPARTITE MULTIGRAPHS

  • Zaker, Manouchehr (Department of Mathematics Institute for Advanced Studies in Basic Sciences and School of Computer Science Institute for Research in Fundamental Sciences (IPM))
  • Received : 2021.02.20
  • Accepted : 2021.11.08
  • Published : 2022.01.31

Abstract

This paper deals with the λ-labeling and L(2, 1)-coloring of simple graphs. A λ-labeling of a graph G is any labeling of the vertices of G with different labels such that any two adjacent vertices receive labels which differ at least two. Also an L(2, 1)-coloring of G is any labeling of the vertices of G such that any two adjacent vertices receive labels which differ at least two and any two vertices with distance two receive distinct labels. Assume that a partial λ-labeling f is given in a graph G. A general question is whether f can be extended to a λ-labeling of G. We show that the extension is feasible if and only if a Hamiltonian path consistent with some distance constraints exists in the complement of G. Then we consider line graph of bipartite multigraphs and determine the minimum number of labels in L(2, 1)-coloring and λ-labeling of these graphs. In fact we obtain easily computable formulas for the path covering number and the maximum path of the complement of these graphs. We obtain a polynomial time algorithm which generates all Hamiltonian paths in the related graphs. A special case is the Cartesian product graph Kn☐Kn and the generation of λ-squares.

Keywords

Acknowledgement

The author thanks the anonymous reviewers for their useful comments.

References

  1. H. L. Bodlaender, H. Broersma, F. V. Fomin, A. V. Pyatkin, and G. J. Woeginger, Radio labeling with preassigned frequencies, SIAM J. Optim. 15 (2004), no. 1, 1-16. https://doi.org/10.1137/S1052623402410181
  2. H. L. Bodlaender, T. Kloks, R. B. Tan, and J. van Leeuwen, λ-coloring of graphs, in STACS 2000 (Lille), 395-406, Lecture Notes in Comput. Sci., 1770, Springer, Berlin, 2000. https://doi.org/10.1007/3-540-46541-3_33
  3. J. S. Deogun, D. Kratsch, and G. Steiner, 1-tough cocomparability graphs are Hamiltonian, Discrete Math. 170 (1997), no. 1-3, 99-106. https://doi.org/10.1016/0012-365X(95)00359-5
  4. J. Fiala, T. Kloks, and J. Kratochvil, Fixed-parameter complexity of λ-labelings, Discrete Appl. Math. 113 (2001), no. 1, 59-72. https://doi.org/10.1016/S0166-218X(00)00387-5
  5. J. Fiala, J. Kratochvil, and A. Proskurowski, Distance constrained labeling of precolored trees, in Theoretical computer science (Torino, 2001), 285-292, Lecture Notes in Comput. Sci., 2202, Springer, Berlin, 2001. https://doi.org/10.1007/3-540-45446-2_18
  6. D. A. Fotakis, S. E. Nikoletseas, V. G. Papadopoulou, and P. G. Spirakis, Hardness results and efficient approximations for frequency assignment problems: radio labelling and radio coloring, Comput. Inform. 20 (2001), no. 2, 121-180.
  7. D. A. Fotakis and P. G. Spirakis, A Hamiltonian approach to the assignment of nonreusable frequencies, in Foundations of software technology and theoretical computer science (Chennai, 1998), 18-29, Lecture Notes in Comput. Sci., 1530, Springer, Berlin, 1998. https://doi.org/10.1007/978-3-540-49382-2_3
  8. J. P. Georges, D. W. Mauro, and M. I. Stein, Labeling products of complete graphs with a condition at distance two, SIAM J. Discrete Math. 14 (2001), no. 1, 28-35. https://doi.org/10.1137/S0895480199351859
  9. J. P. Georges, D. W. Mauro, and M. A. Whittlesey, Relating path coverings to vertex labellings with a condition at distance two, Discrete Math. 135 (1994), no. 1-3, 103-111. https://doi.org/10.1016/0012-365X(93)E0098-O
  10. J. R. Griggs and R. K. Yeh, Labelling graphs with a condition at distance 2, SIAM J. Discrete Math. 5 (1992), no. 4, 586-595. https://doi.org/10.1137/0405048
  11. H. Hajiabolhassan, M. L. Mehrabadi, and R. Tusserkani, Tabular graphs and chromatic sum, Discrete Math. 304 (2005), no. 1-3, 11-22. https://doi.org/10.1016/j.disc.2005.04.022
  12. Y.-Z. Huang, C. Chiang, L. Huang, and H. Yeh, On L(2, 1)-labeling of generalized Petersen graphs, J. Comb. Optim. 24 (2012), no. 3, 266-279. https://doi.org/10.1007/s10878-011-9380-8
  13. D. Kuo and J.-H. Yan, On L(2, 1)-labelings of Cartesian products of paths and cycles, Discrete Math. 283 (2004), no. 1-3, 137-144. https://doi.org/10.1016/j.disc.2003.11.009
  14. B. Li, H. J. Broersma, and S. Zhang, Forbidden subgraphs for Hamiltonicity of 1-tough graphs, Discuss. Math. Graph Theory 36 (2016), no. 4, 915-929. https://doi.org/10.7151/dmgt.1897
  15. X. Li, B. Wei, Z. Yu, and Y. Zhu, Hamilton cycles in 1-tough triangle-free graphs, Discrete Math. 254 (2002), no. 1-3, 275-287. https://doi.org/10.1016/S0012-365X(01)00358-2
  16. L. Lovasz, J. Nesetril, and A. Pultr, On a product dimension of graphs, J. Combin. Theory Ser. B 29 (1980), no. 1, 47-67. https://doi.org/10.1016/0095-8956(80)90043-X
  17. D. Lu, W. Lin, and Z. Song, Distance two labelings of Cartesian products of complete graphs, Ars Combin. 104 (2012), 33-40.
  18. C. Lu and Q. Zhou, Path covering number and L(2, 1)-labeling number of graphs, Discrete Appl. Math. 161 (2013), no. 13-14, 2062-2074. https://doi.org/10.1016/j.dam.2013.02.020
  19. F. Maffray and B. A. Reed, A description of claw-free perfect graphs, J. Combin. Theory Ser. B 75 (1999), no. 1, 134-156. https://doi.org/10.1006/jctb.1998.1872
  20. L. Rao, A sufficient condition for 1-tough graphs to be Hamiltonian, in Graph theory, combinatorics, and algorithms, Vol. 1, 2 (Kalamazoo, MI, 1992), 977-980, Wiley-Intersci. Publ, Wiley, New York, 1995.
  21. U. Sarkar and A. Adhikari, On characterizing radio k-coloring problem by path covering problem, Discrete Math. 338 (2015), no. 4, 615-620. https://doi.org/10.1016/j.disc.2014.11.014
  22. C. Schwarz and D. S. Troxell, L(2, 1)-labelings of Cartesian products of two cycles, Discrete Appl. Math. 154 (2006), no. 10, 1522-1540. https://doi.org/10.1016/j.dam.2005.12.006
  23. Z. Shao and R. Solis-Oba, On some results for the L(2, 1)-labeling on Cartesian sum graphs, Ars Combin. 124 (2016), 365-377.
  24. Z. Shao, R. K. Yeh, and D. Zhang, The L(2, 1)-labeling on graphs and the frequency assignment problem, Appl. Math. Lett. 21 (2008), no. 1, 37-41. https://doi.org/10.1016/j.aml.2006.08.029
  25. B. Wei, Hamiltonian cycles in 1-tough graphs, Graphs Combin. 12 (1996), no. 4, 385-395. https://doi.org/10.1007/BF01858471
  26. R. K. Yeh, A survey on labeling graphs with a condition at distance two, Discrete Math. 306 (2006), no. 12, 1217-1231. https://doi.org/10.1016/j.disc.2005.11.029