Acknowledgement
The author thanks the anonymous reviewers for their useful comments.
References
- H. L. Bodlaender, H. Broersma, F. V. Fomin, A. V. Pyatkin, and G. J. Woeginger, Radio labeling with preassigned frequencies, SIAM J. Optim. 15 (2004), no. 1, 1-16. https://doi.org/10.1137/S1052623402410181
- H. L. Bodlaender, T. Kloks, R. B. Tan, and J. van Leeuwen, λ-coloring of graphs, in STACS 2000 (Lille), 395-406, Lecture Notes in Comput. Sci., 1770, Springer, Berlin, 2000. https://doi.org/10.1007/3-540-46541-3_33
- J. S. Deogun, D. Kratsch, and G. Steiner, 1-tough cocomparability graphs are Hamiltonian, Discrete Math. 170 (1997), no. 1-3, 99-106. https://doi.org/10.1016/0012-365X(95)00359-5
- J. Fiala, T. Kloks, and J. Kratochvil, Fixed-parameter complexity of λ-labelings, Discrete Appl. Math. 113 (2001), no. 1, 59-72. https://doi.org/10.1016/S0166-218X(00)00387-5
- J. Fiala, J. Kratochvil, and A. Proskurowski, Distance constrained labeling of precolored trees, in Theoretical computer science (Torino, 2001), 285-292, Lecture Notes in Comput. Sci., 2202, Springer, Berlin, 2001. https://doi.org/10.1007/3-540-45446-2_18
- D. A. Fotakis, S. E. Nikoletseas, V. G. Papadopoulou, and P. G. Spirakis, Hardness results and efficient approximations for frequency assignment problems: radio labelling and radio coloring, Comput. Inform. 20 (2001), no. 2, 121-180.
- D. A. Fotakis and P. G. Spirakis, A Hamiltonian approach to the assignment of nonreusable frequencies, in Foundations of software technology and theoretical computer science (Chennai, 1998), 18-29, Lecture Notes in Comput. Sci., 1530, Springer, Berlin, 1998. https://doi.org/10.1007/978-3-540-49382-2_3
- J. P. Georges, D. W. Mauro, and M. I. Stein, Labeling products of complete graphs with a condition at distance two, SIAM J. Discrete Math. 14 (2001), no. 1, 28-35. https://doi.org/10.1137/S0895480199351859
- J. P. Georges, D. W. Mauro, and M. A. Whittlesey, Relating path coverings to vertex labellings with a condition at distance two, Discrete Math. 135 (1994), no. 1-3, 103-111. https://doi.org/10.1016/0012-365X(93)E0098-O
- J. R. Griggs and R. K. Yeh, Labelling graphs with a condition at distance 2, SIAM J. Discrete Math. 5 (1992), no. 4, 586-595. https://doi.org/10.1137/0405048
- H. Hajiabolhassan, M. L. Mehrabadi, and R. Tusserkani, Tabular graphs and chromatic sum, Discrete Math. 304 (2005), no. 1-3, 11-22. https://doi.org/10.1016/j.disc.2005.04.022
- Y.-Z. Huang, C. Chiang, L. Huang, and H. Yeh, On L(2, 1)-labeling of generalized Petersen graphs, J. Comb. Optim. 24 (2012), no. 3, 266-279. https://doi.org/10.1007/s10878-011-9380-8
- D. Kuo and J.-H. Yan, On L(2, 1)-labelings of Cartesian products of paths and cycles, Discrete Math. 283 (2004), no. 1-3, 137-144. https://doi.org/10.1016/j.disc.2003.11.009
- B. Li, H. J. Broersma, and S. Zhang, Forbidden subgraphs for Hamiltonicity of 1-tough graphs, Discuss. Math. Graph Theory 36 (2016), no. 4, 915-929. https://doi.org/10.7151/dmgt.1897
- X. Li, B. Wei, Z. Yu, and Y. Zhu, Hamilton cycles in 1-tough triangle-free graphs, Discrete Math. 254 (2002), no. 1-3, 275-287. https://doi.org/10.1016/S0012-365X(01)00358-2
- L. Lovasz, J. Nesetril, and A. Pultr, On a product dimension of graphs, J. Combin. Theory Ser. B 29 (1980), no. 1, 47-67. https://doi.org/10.1016/0095-8956(80)90043-X
- D. Lu, W. Lin, and Z. Song, Distance two labelings of Cartesian products of complete graphs, Ars Combin. 104 (2012), 33-40.
- C. Lu and Q. Zhou, Path covering number and L(2, 1)-labeling number of graphs, Discrete Appl. Math. 161 (2013), no. 13-14, 2062-2074. https://doi.org/10.1016/j.dam.2013.02.020
- F. Maffray and B. A. Reed, A description of claw-free perfect graphs, J. Combin. Theory Ser. B 75 (1999), no. 1, 134-156. https://doi.org/10.1006/jctb.1998.1872
- L. Rao, A sufficient condition for 1-tough graphs to be Hamiltonian, in Graph theory, combinatorics, and algorithms, Vol. 1, 2 (Kalamazoo, MI, 1992), 977-980, Wiley-Intersci. Publ, Wiley, New York, 1995.
- U. Sarkar and A. Adhikari, On characterizing radio k-coloring problem by path covering problem, Discrete Math. 338 (2015), no. 4, 615-620. https://doi.org/10.1016/j.disc.2014.11.014
- C. Schwarz and D. S. Troxell, L(2, 1)-labelings of Cartesian products of two cycles, Discrete Appl. Math. 154 (2006), no. 10, 1522-1540. https://doi.org/10.1016/j.dam.2005.12.006
- Z. Shao and R. Solis-Oba, On some results for the L(2, 1)-labeling on Cartesian sum graphs, Ars Combin. 124 (2016), 365-377.
- Z. Shao, R. K. Yeh, and D. Zhang, The L(2, 1)-labeling on graphs and the frequency assignment problem, Appl. Math. Lett. 21 (2008), no. 1, 37-41. https://doi.org/10.1016/j.aml.2006.08.029
- B. Wei, Hamiltonian cycles in 1-tough graphs, Graphs Combin. 12 (1996), no. 4, 385-395. https://doi.org/10.1007/BF01858471
- R. K. Yeh, A survey on labeling graphs with a condition at distance two, Discrete Math. 306 (2006), no. 12, 1217-1231. https://doi.org/10.1016/j.disc.2005.11.029