• Title/Summary/Keyword: bezier curve

Search Result 110, Processing Time 0.027 seconds

APPLICATION OF DEGREE REDUCTION OF POLYNOMIAL BEZIER CURVES TO RATIONAL CASE

  • PARK YUNBEOM;LEE NAMYONG
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.159-169
    • /
    • 2005
  • An algorithmic approach to degree reduction of rational Bezier curves is presented. The algorithms are based on the degree reduction of polynomial Bezier curves. The method is introduced with the following steps: (a) convert the rational Bezier curve to polynomial Bezier curve by using homogenous coordinates, (b) reduce the degree of polynomial Bezier curve, (c) determine weights of degree reduced curve, (d) convert the Bezier curve obtained through step (b) to rational Bezier curve with weights in step (c).

Bezier Control Points for the Image of a Domain Curve on a Bezier Surface (베지어 곡면의 도메인 곡선의 이미지 곡선에 대한 베지어 조정점의 계산)

  • 신하용
    • Korean Journal of Computational Design and Engineering
    • /
    • v.1 no.2
    • /
    • pp.158-162
    • /
    • 1996
  • Algorithms to find the Bezier control points of the image of a Bezier domain curve on a Bezier surface are described. The diagonal image curve is analysed and the general linear case is transformed to the diagonal case. This proposed algorithm gives the closed form solution to find the control points of the image curve of a linear domain curve. If the domain curve is not linear, the image curve can be obtained by solving the system of linear equations.

  • PDF

Calculation of NURBS Curve Intersections using Bzier Clipping (B$\acute{e}$zier클리핑을 이용한NURBS곡선간의 교점 계산)

  • 민병녕;김재정
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.2
    • /
    • pp.113-120
    • /
    • 1998
  • Calculation of intersection points by two curves is fundamental to computer aided geometric design. Bezier clipping is one of the well-known curve intersection algorithms. However, this algorithm is only applicable to Bezier curve representation. Therefore, the NURBS curves that can represent free from curves and conics must be decomposed into constituent Bezier curves to find the intersections using Bezier clipping. And the respective pairs of decomposed Bezier curves are considered to find the intersection points so that the computational overhead increases very sharply. In this study, extended Bezier clipping which uses the linear precision of B-spline curve and Grevill's abscissa can find the intersection points of two NURBS curves without initial decomposition. Especially the extended algorithm is more efficient than Bezier clipping when the number of intersection points is small and the curves are composed of many Bezier curve segments.

  • PDF

A Study on the Color Collection of Real Image Using the Triplicated Piecewise Bezier Cubic-Curve (3중첩 구간적 베지어 3차 곡선을 이용한 실사 영상의 컬러 보정에 관한 연구)

  • 권희용;이지영
    • The Journal of Information Technology
    • /
    • v.5 no.1
    • /
    • pp.99-111
    • /
    • 2002
  • Due to non-linear characteristics of color spaces, color corrections using linear conversions for real image near color reappearance causes color distortions. In order to overcome this problem, the Bezier Curve, constructed with a set of arbitrary plane in the linear theory, has been used. However, the Bezier Curve increases in proportion to the number of data points, resulting in higher computational complexities. This paper attempts to use a Triplicated Piecewise Bezier Cubic-Curve (TPBC-Curve) of which the degree is cubic on the whole interval while keeping the characteristics of Bezier Curves. By Comparing the TPBC-Curve with Bezier Curve of 20 degree, the paper not only reduces the distortion during color correction but also lessens the relative increase of workload that is caused by the color correction in a small zone.

  • PDF

An Improvement of Navigation in Robot Soccer using Bezier Curve (베지어 곡선을 이용한 로봇 축구 항법의 개선)

  • Jung, Tae-Young;Lee, Gui-Hyung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.6
    • /
    • pp.696-702
    • /
    • 2015
  • This paper suggests a new method for making a navigation path by using Bezier curve in order to improve the navigation performance used to avoid obstacles during a robot soccer game. We analyzed the advantages and disadvantages of both vector-field and limit-cycle navigation methods, which are the mostly widely used navigation methods for avoiding obstacles. To improve the disadvantages of these methods, we propose a new design technique for generating a more proper path using Bezier curve and describe its advantages. Using computer simulations and experiments, we compare the performance of vector-field navigation with that of Bezier curve navigation. The results prove that the navigation performance using Bezier curve is relatively superior to the other method.

The Closed Form of Hodograph of Rational Bezier curves and Surfaces (유리 B$\acute{e}$zier 곡선과 곡면의 호도그래프)

  • 김덕수;장태범;조영송
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.2
    • /
    • pp.135-139
    • /
    • 1998
  • The hodograph, which are usually defined as the derivative of parametric curve or surface, is useful far various geometric operations. It is known that the hodographs of Bezier curves and surfaces can be represented in the closed form. However, the counterparts of rational Bezier curves and surface have not been discussed yet. In this paper, the equations are derived, which are the closed form of rational Bezier curves and surfaces. The hodograph of rational Bezier curves of degree n can be represented in another rational Bezier curve of degree 2n. The hodograph of a rational Hazier surface of degree m×n with respect to a parameter can be also represented in rational Bezier surface of degree 2m×2n. The control points and corresponding weight of the hodographs are directly computed using the control points and weights of the given rational curves or surfaces.

  • PDF

Hypothesis Tests For Performances of a New Spline Interpolation Technique (신 스플라인보간법의 퍼포먼스 가설점정)

  • Yu, Ki-Yun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.7 no.1 s.13
    • /
    • pp.29-40
    • /
    • 1999
  • In vector GIS, natural linear entities (called linear entitles) are usually represented by a set of line segments. As an alternative of the line segments, curve segments can be used to represent the linear entities. The curve segments, as one-dimensional spatial objects, we generated by spline interpolation technique such as Bezier technique. In an effort to improve its accuracy in resembling the linear entities, the Bezier technique was modified generating a new technique (called New technique) (Kiyun, 1998). In this paper, validity of the New technique was tested. Test focused on answering two questions: (1) whether or not the curve segments from the New technique replace line segments so as to enhance the accuracy of representations of linear entities, and (2) whether or not the curve segments from the New technique represent the linear entities more accurately than curve segments from the Bezier technique. Answering these two questions entailed two hypothesis tests. For test data, a series of hydrologic lines on 7.5-minute USGS map series were selected. Test were done using t-test method and statistical inferences were made from the results. Test results indicated that curve segments from both the Bezier and New techniques represent the linear entities more accurately than the line segments do. In addition, curve segments from the New technique represent the linear entities more accurately than the line segments from the Bezier technique do at probability level 69% or higher.

  • PDF

The Detection of Inflection Points on Planar Rational $B\'{e}zier$ Curves (평면 유리 $B\'{e}zier$곡선상의 변곡점 계산법)

  • 김덕수;이형주;장태범
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.4
    • /
    • pp.312-317
    • /
    • 1999
  • An inflection point on a curve is a point where the curvature vanishes. An inflection point is useful for various geometric operations such as the approximation of curves and intersection points between curves or curve approximations. An inflection point on planar Bezier curves can be easily detected using a hodograph and a derivative of hodograph, since the closed from of hodograph is known. In the case of rational Bezier curves, for the detection of inflection point, it is needed to use the first and the second derivatives have higher degree and are more complex than those of non-rational Bezier curvet. This paper presents three methods to detect inflection points of rational Bezier curves. Since the algorithms avoid explicit derivations of the first and the second derivatives of rational Bezier curve to generate polynomial of relatively lower degree, they turn out to be rather efficient. Presented also in this paper is the theoretical analysis of the performances of the algorithms as well as the experimental result.

  • PDF

A Unified Surface Modeling Technique Using a Bezier Curve Model (de Casteljau Algorithm) (베지에 곡선모델 (드 카스텔죠 알고리듬) 을 이용한 곡면 통합 모델링 기법)

  • Rhim, Joong-Hyun;Lee, Kyu-Yeul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.4
    • /
    • pp.127-138
    • /
    • 1997
  • In this study, a new technique is presented, by which one can define ship hull form with full fairness from the input data of lines. For curve modeling, the de Casteljau Algorithm and Bezier control points are used to express free curves and to establish the unified curve modeling technique which enables one to convert non-uniform B-spline (NUB) curve or cubic spline curve into composite Bezier curves. For surface modeling, the mesh curve net which is required to define surface of ship hull form is interpolated by the method of the unified curve modeling, and the boundary curve segments of Gregory surface patches are generated by remeshing(rearranging) the given mesh curve net. From these boundary information, composite Gregory surfaces of good quality in fairness can be formulated.

  • PDF

Path Planning of Soccer Robot using Bezier Curve (Bezier 곡선을 이용한 축구로봇의 경로 계획)

  • 조규상;이종운
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2002.06a
    • /
    • pp.161-165
    • /
    • 2002
  • This paper describe a trajectory generation method for a soccer robot using cubic Bezier curve. It is proposed that the method to determine the location of control points. The control points are determined by the distance and the velocity parameters of start and target positions. Simulation results show its traceability of the trajectory of mobile robot.

  • PDF