• Title/Summary/Keyword: altitude control

Search Result 418, Processing Time 0.028 seconds

oneM2M Standard based Low Altitude Drone/UAV Traffic Management System (oneM2M 표준 기반 저고도 무인기 관리 및 운영시스템)

  • Ahn, Il-Yeop;Park, Jong-Hong;Sung, Nak-Myoung;Kim, Jaeho;Choi, Sung-Chan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.301-307
    • /
    • 2018
  • Unmanned Aerial Vehicles (i.e., drone) are gaining a lot of interest from a wide range of application domains such as infrastructure monitoring and parcel delivery service. In those service scenarios, multiple UAVs are involved and should be reliably operated by so-called UAV management system. For that, we propose oneM2M standard based UAV management and control system which is specifically targeted at traffic management of low-altitude UAVs. In this paper, we include oneM2M platform architecture and its implementation for UAV management system in conjunction with UAV interworking procedure.

Characteristics of Propulsion System at the High Altitude Flight Test of 50m-long Airship (50m급 비행선의 고고도 비행시험에서 추진시스템 특성)

  • Jung Yong-Wun;Yang Soo-Seok;Kim Dong-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.41-44
    • /
    • 2006
  • The propulsion system of VIA-50A airship consists of engine, generator, inverter, motor and propeller. The motor and propeller was designed that can be tilted to $120^{\circ}$ for thrust vector control. When the flight test was performed, various condition data of the airship were obtained by wireless telecommunication and analyzed in real-time. In this paper, we presented flight test results of propulsion system. Considering the designed requirement and normal range, we verified that all constituent part was operated in normal condition during the high altitude flight test.

  • PDF

A Research for Energy Harvest/Distribution/Control of HALE UAV based on the Solar Energy (태양 일조량 변화에 따른 HALE UAV의 동력 수집/분배/제어 특성 연구)

  • Nam, Yoonkwang;Park, To Soon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.4
    • /
    • pp.77-84
    • /
    • 2015
  • Recently, as the needs for eco-friendly aero propulsion system increase gradually, many study works have been conducted to develop the hybrid propulsion system for High Altitude Long Endurance(HALE) UAV. In this study, we analyzed both suitable energy distribution and management methodology among the total energy collected from solar cell and the total required energy of aerial vehicle and required energy of the regenerative fuel cell(RFC) for driving in the night time and optimized the energy balance mechanism based on the ascribed mission profile.

Analysis of the Detection Time of Distress Signal for LEOSAR and MEOSAR Systems (LEOSAR 및 MEOSAR 시스템의 조난신호 탐지시간 해석)

  • Lim, Sang-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.4
    • /
    • pp.377-384
    • /
    • 2006
  • In this paper the detection time of the distress signal for the satellite-based search and rescue (SAR) system is evaluated. Present LEOSAR system in operation employs a few Low-altitude Earth Orbit (LEO) satellites and hence provides poor and local coverage availability. This results in a considerably long waiting time for a distress beacon to be detected by a rescue mission control center. One can expect that the detection time of the distress signal will be significantly reduced if the proposed MEOSAR system, which is based on the Medium-altitude Earth Orbit (MEO) satellites, is implemented. Taking into account the influence of the obstacles on the beacon signal, simulations are carried out to evaluate the detection time of distress signals for the LEOSAR and MEOSAR systems and the corresponding results are analyzed.

  • PDF

A Study on Pick-up Device of Beep Sea Manganese Nodules Collector (심해저 망간단괴 집광기의 채집장치에 관한 연구)

  • Hong, Sub;Sim, Jae-Yong;Lee, Tae-Hee;Choi, Jong-Soo
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.891-895
    • /
    • 1996
  • Performance and efficiency of hybrid (hydraulic-mechanical) pick-up device of deep sea manganese nodules collector are very sensitive to altitude and altitude of pick-up head relative to undulating seafloor. For this reason, motion control of pick-up head relative to the changing deep sea topography and other disturbances is of particular importance in design of pick-up device. The concept of design axiom is applied to a pick-up device of hybrid type. Kinematic analysis conducted in absolute Cartesian coordinates gives position, velocity, and acceleration of the hydraulic cylinders which enable the pick-up head to keep the preset optimal distance from seafloor. Inverse dynamic analysis provides the driving forces of hydraulic cylinders and the reaction forces at each joint. Design sensitivity analysis is performed in order to investigate the effects of possible design variables on the change of the maximum strokes of hydraulic cylinders. The direct differentiation method is used to obtain the design sensitivity coefficients.

  • PDF

Simulation Study on GEO-KOMPSAT Operational Orbit Injection (정지궤도 복합위성 운용궤도 진입과정 시뮬레이션 연구)

  • Park, Bong-Kyu;Yang, Koon-Ho;Lee, Sang-Cherl
    • Aerospace Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.65-73
    • /
    • 2011
  • After launch, in order to inject the geostationary satellite into its operational orbit, the perigee altitude are forced to be raised to geostationary altitude by firing onboard LAE(Liquid Apogee Engine) at apogee of the transfer orbit. In this process, the LAE burn is divided into three or four separated burns in order to control the orbit very precisely by giving feedback the determined orbit informations and to inject the satellite in predefined longitude. This paper proposes an algorithm to determine LAE firing time slots and ${\Delta}V$ vectors under assumption of impulsive LAE burning, and additionally, a method to compensate errors induced by continuous burning. And computer simulations have been performed to validate proposed algorithms.

Dynamic Modeling and Stabilization Techniques for Tri-Rotor Unmanned Aerial Vehicles

  • Yoo, Dong-Wan;Oh, Hyon-Dong;Won, Dae-Yeon;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.3
    • /
    • pp.167-174
    • /
    • 2010
  • The design, dynamics, and control allocation of tri-rotor unmanned aerial vehicles (UAVs) are introduced in this paper. A trirotor UAV has three rotor axes that are equidistant from its center of gravity. Two designs of tri-rotor UAV are introduced in this paper. The single tri-rotor UAV has a servo-motor that is installed on one of the three rotors, which enables rapid control of its motion and its various attitude changes-unlike a quad-rotor UAV that depends only on the angular velocities of four rotors for control. The other design is called 'coaxial tri-rotor UAV,' which has two rotors installed on each rotor axis. Since the tri-rotor type of UAV has the yawing problem induced from an unpaired rotor's reaction torque, it is necessary to derive accurate dynamic and design control logic for both single and coaxial tri-rotors. For that reason, a control strategy is proposed for each type of tri-rotor, and nonlinear simulations of the altitude, Euler angle, and angular velocity responses are conducted by using a classical proportional-integral-derivative controller. Simulation results show that the proposed control strategies are appropriate for the control of single and coaxial tri-rotor UAVs.

Gyroless Yaw Angle Compassing of Earth-Pointing Spacecraft Using Magnetic Sensor

  • Lee, Seon-Ho;Ahn, Hyo-Sung;Rhee, Seung-Wu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.2055-2058
    • /
    • 2004
  • This paper formulates a yaw angle determination algorithm for earth-point satellite. The algorithm based on vector observation, is implemented with the limited vector measurements. The proposed algorithm doesn't require gyro measurement data but magnetic sensor measurement data. In order to confirm the usefulness of the proposed method, we investigate the simulated telemetry data of the KOMPSAT-2, a satellite that is scheduled to be launched into a 685km altitude sun synchronous circular orbit in 2005.

  • PDF

An Approach to PWM Controller Design for the Attitude Control of Artificial Satellites

  • Lee, Ho-Jae;Park, Jin-Bae;Joo, Young-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.656-659
    • /
    • 2003
  • This paper concerns a design technique of pulse-width-modulated (PWM) controller via the digital redesign. The digital redesign is a converting technique a well-designed analog controller into the equivalent digital one maintaining the property of the original analog control system in the sense of state-matching. The redesigned digital controller is again converted into PWM controller using the equivalent area principle. An example-the altitude control or artificial satellites is included to show the effectiveness of the proposed method.

  • PDF

The Design of Path Length Controller in Ring Laser Gyroscope for Attitude Control in the space launch vehicle (우주발사체 자세제어용 링 레이저 자이로 피에조 구동기 설계)

  • Kim, Eui-Chan;Yang, Koon-Ho
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.31-35
    • /
    • 2010
  • The Ring Laser Gyroscope makes use of the Sagnac effect within a resonant ring cavity of a He-Ne laser and has more accuracy than the other gyros. The space launch vehicle use require the high accuracy Gyro to control and determine the altitude to deliver the satellite in the space. In this paper, The theory of the Path Length Control is explained. The electrical design of Path Length Controller is described. The Design for Path Length Controller is composed of the demodulator, integrator, phase shifter, high voltage amplifier. We apply the circuit to 28cm square ring laser gyro and get the test results.