• Title/Summary/Keyword: Water Disaster Management

Search Result 444, Processing Time 0.033 seconds

Improvement Manual for Waterworks Facilities to Reduce the Damage of Volcanic Ash (화산재 피해 저감을 위한 상수도시설 대응매뉴얼 개선방안)

  • Yoon, Hyoung-Uk;La, Da-Hye;Lee, Gyeng-Bin;Kim, Min Gyu;Chung, Il-Moon
    • The Journal of Engineering Geology
    • /
    • v.28 no.2
    • /
    • pp.267-276
    • /
    • 2018
  • Volcanic ash from volcanic eruptions spreads to vast areas hundreds of kilometers away, and when volcanic ash flows into surface waters, it will be damaged by water supply. In case of water supply facilities, it provides to people drinking water and domestic water, be consumed by the people cause social disorder when water supply is cut off due to damage such as water pollution caused by harmful materials of volcanic ash. However, when we looked at the disaster management manual, the establishment of a water supply facility manual to deal with the damage of volcanic ash was found to be insufficient. Therefore, in this study, the existing volcanic and water pollution related manuals were analyzed and problems were derived. In order to make quick situation judgment and response activities, we have suggested the scope of the water supply facility manual, disaster type, major missions and system of related organizations, and scenario of crisis situation by disaster type.

A investigation study on the Maintenance Management for Fire Safety According to Analysis of Fire Accident in Korea(I) (국내 지하공동구의 화재사례 분석을 통한 화재안전관리방안에 관한 조사 연구(I))

  • Kim, Dong-Eun;Shin, Yi-Chul;Kwon, Young-Jin
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.328-333
    • /
    • 2008
  • Underground utility tunnels are important facilities not only as an essential social infrastructure for modern information society but as the economic and efficient carrier of various urban infrastructure including electric power lines, communication cables, gas pipes, water supply and drainage pipes and energy supplies to metropolitan and residential areas. It is the aim of this study to investigation study on the Maintenance Management for Fire Safety According to Analysis of Fire Accident in Korea.

  • PDF

Potential damage assessment of inland wetlands by topsoil erosion (표토침식에 따른 내륙습지 훼손 가능성 평가)

  • Kim, Seongwon;Jeong, Anchul;Lee, Daeeop;Lee, Giha
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.7
    • /
    • pp.521-531
    • /
    • 2020
  • The purpose of this study is to suggest a quantitative assessment of wetland damage considering the effects of topsoil erosion and deposition from rainfall. In the Cheoncheon Basin located upstream of the Yongdam Dam, 16 wetlands are located, but the lacustrine and small palustrine wetland were analyzed for possible damage to erosion and deposition. As a result of applying typhoon events in 2002 and 2003, the sediment load from the upper basin was the highest at 2.30% (22,548 ㎥) of low water capacity. The average sediment load in the mountain areas was found to be 0.03% of the low water capacity, and it was analyzed to be less damaging than the lacustrine with relatively large watershed. as a result of the model, the lacustrine wetland, where a large area is used as agricultural land, shows a high probability of sediment yield, so it is highly likely to damage the wetland by topsoil erosion.

Countermeasure and Mitigation to Flood Disaster in Japan (일본(日本)의 하천방재(河川防災) 대책(對策)에 대한 연구(研究))

  • Rim, Byung Dae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.117-127
    • /
    • 1992
  • Japan is situated in the zone attacked repeatedly by typhoon. She is apt to be given by the nature damage like flood and loss the life and the property conventionally because of her short channel and steep slope ground. This paper is centered on the method of analysis and the damage management of river which are based on the Bulletin of the Disaster Prevention Research Institute of Kyoto University. The field of flood disaster, submersion damage, water proof system, debris control disaster and water resources are studied respectely. The river management examples which are done by Foundation of River and Basin Integrated Communications and The Yodo River are analyzed. The above analysis helps to control disaster of river in Korea.

  • PDF

Groundwater use management using existing wells to cope with drought

  • Amos, Agossou;Yang, Jeong-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.450-450
    • /
    • 2022
  • The study aims to develop scenarios for efficient groundwater use using existing wells in order to prepare for an eventual drought. In the recent decades, droughts are not only intensifying, but they are also spreading into territories where droughts used to be less intense and relatively infrequent. With the increasing disaster, efficient groundwater use is urgently needed not only to prevent the problem of groundwater depletion but also drought risk reduction. Thus, the research addressed the problem of efficient aquifer use as source of water during drought and emergencies. The research focused on well network system applied to Yanggok-ri in Korea using simulation models in visual MODFLOW. The approach consists to variate groundwater pumping rate in the most important wells used for irrigation across the study area and evaluate the pumping effect on water level fluctuation. From the evaluation, the pumping period, appropriate pumping rate of each well and the most vulnerable wells are determined for a better groundwater management. The project results divide the study area into two different regions (A and B), where the wells in the region A (western part of the region) show a crucial drop in water level from May to early July and in august as consequence of water pumping. While wells in region B are also showing a drawdown in groundwater level but relatively less compare to region A. The project suggests a scenarios of wells which should operate considering water demand, groundwater level depletion and daily pumping rate. Well Network System in relevant project, by pumping in another well where water is more abundant and keep the fixed storage in region A, is a measure to improve preparedness to reduce eventual disaster. The improving preparedness measure from the project, indicates its implication to better groundwater management.

  • PDF

Integration of Total Pollution Load Management System and Environmental Impact Assessment related System (수계 오염총량관리제와 환경영향평가제도의 통합운영방안)

  • Lee, Jong-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.12 no.5
    • /
    • pp.359-367
    • /
    • 2003
  • The total pollution load management system of watershed has been implemented upon Special Law pertaining to the Han River Watershed Water Quality Improvement and Residents Support, Special Law pertaining to the Nakdong River Watershed Water Management and Residents Support, Special Law pertaining to the Youngsan River Watershed Water Management and Residents Support, and Special Law pertaining to the Seomjin River Watershed Water Management and Residents Support in Korea since 2002. But many other similar systems with total pollution load management system of watershed are being operated separately or independently, even though its purpose is nearly same with those of the total maximum pollutants load management in Law on Water Quality Environmental Protection, environmental impact assessment(EIA) in Law of Impact Assessment on Environment, Transportation and Disaster and Pre-environmental assessment of Environmental Policy Act. Therefore the contents of total pollution load management system of watershed and many other related systems could be overlapped and at some times have inconsistency among them. This study suggests first the integrated operation of total pollution load management system of watershed, EIA, pre-environmental assessment, urban planning, and sewage planning and secondly EIA system development by integration of EIA and pre-environmental assessment and strategic environmental assessment(SEA).

A Study on the Effect Analysis for the Regeneration Project for the Zones Vulnerable to Natural Disaster using Structural Equation Model (구조방정식 모형을 이용한 자연재해위험지구 정비사업 효과 분석)

  • Lee, Kyung Su;Jung, Jae Kwang;Heo, Bo Young;Byeon, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.8
    • /
    • pp.843-855
    • /
    • 2013
  • In the modern society with high science and technological level, many people have been tried to mitigate natural disaster. The disaster was so huge that we made special service organization which deal with 'The Natural Disaster Endangered Districts'. But the analysis of the organization's works was inadequate. In order to analyze their regeneration project, this study selected analysis area and did a spot survey. We did validity, reliability tests and statistical data analysis of this survey. We also did reliability analysis of this policy using Structural Equation Model. According to the result, there is a reasonable suitability in 'The Natural Disaster Repair work Policy'. And it also improved spiritual, substantial environment of the surrounding people. The people formed positive awareness about Government Repairing Policy. This 'Natural Disaster Repair work Policy' is essential to improve and develop local community. Therefore it will affect democratic development of society.

Experimental and Analytical Study on the Water Level Detection and Early Warning System with Intelligent CCTV (지능형 CCTV를 이용한 수위감지 경보시스템에 대한 실험 및 해석적 연구)

  • Hong, Sangwan;Park, Youngjin;Lee, Hacheol
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.1
    • /
    • pp.105-115
    • /
    • 2014
  • In this research, we developed video analytic algorithms to detect water-level automatically and a system for proactive alarming using intelligent CCTV cameras. We applied these algorithms and a system to test-beds and verified for practical use. We made camera-selection policies and operation plans to keep the detection accuracy high and to optimize the suitability for the ever-changing weather condition, while the environmental factors such as camera shaking and weather condition can affect to detection accuracy. The estimation result of algorithms showed 90% detection accuracy for all CCTV camera types. For water level detection, NIR camera performed great. NIR camera performed over 95% accuracy in day or night, suitable in natural weather condition such as shaking condition, fog, and low light, needs similar installment skills with common cameras, and spends only 15% high cost. As a result, we practically tested water level detection algorithms and operation system based on intelligent CCTV camera. Furthermore, we expect the positive evidences when it is applied for public use.

The development of design-width prediction equation by using 12 local governments data collected from small stream of Korea (국내 12개 시·도 자료를 이용한 소하천 계획하폭 산정식 개발)

  • Choi, Changwon;Cheong, Tae Sung
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.3
    • /
    • pp.185-194
    • /
    • 2023
  • There are more than 22,300 small streams distributed nationwide in Korea, and they have various runoff characteristics depending on basin area, topography and land use. For small stream disaster management, establishing detailed design standards suitable for the small streams is important, but most of the formulas currently proposed in the small stream design standard are based on the river design standard aimed at national and local rivers or foreign river design standards. The design-width is an important factor in determining the size of the stream. It is determined by using design-flood discharges or more variables such as design-flood discharges, basin area, slop, etc in the small stream design standard. This study collected various characteristics information such as the design-flood discharges, basin area, river length and river slop, and design-width values from 4,073 small streams distributed in 12 cities and provinces in Korea to suggest the appropriated design-width formula. This study developed two design-width formulas by using the regression analysis which one is using the design-flood discharges and the other is using various variables such as the design-flood discharges, basin area, river length and river slope collected from the small steams. It is expected that both equations developed in here can be used for small stream disaster management, such as improving small stream design standard or establishing a comprehensive small stream maintenance plan.