DOI QR코드

DOI QR Code

Potential damage assessment of inland wetlands by topsoil erosion

표토침식에 따른 내륙습지 훼손 가능성 평가

  • Kim, Seongwon (Department of Disaster Prevention KNU Emergency Management Institute) ;
  • Jeong, Anchul (International Water Resources Research Institute, Chungnam National University) ;
  • Lee, Daeeop (Department of Disaster Prevention KNU Emergency Management Institute) ;
  • Lee, Giha (Department of Construction and Disaster Prevention Engineering, Kyungpook National University)
  • 김성원 (경북대학교 건설방재공학부 재난대응전략연구소) ;
  • 정안철 (충남대학교 국제수자원연구소) ;
  • 이대업 (경북대학교 건설방재공학부 재난대응전략연구소) ;
  • 이기하 (경북대학교 건설방재공학부)
  • Received : 2020.03.24
  • Accepted : 2020.06.01
  • Published : 2020.07.31

Abstract

The purpose of this study is to suggest a quantitative assessment of wetland damage considering the effects of topsoil erosion and deposition from rainfall. In the Cheoncheon Basin located upstream of the Yongdam Dam, 16 wetlands are located, but the lacustrine and small palustrine wetland were analyzed for possible damage to erosion and deposition. As a result of applying typhoon events in 2002 and 2003, the sediment load from the upper basin was the highest at 2.30% (22,548 ㎥) of low water capacity. The average sediment load in the mountain areas was found to be 0.03% of the low water capacity, and it was analyzed to be less damaging than the lacustrine with relatively large watershed. as a result of the model, the lacustrine wetland, where a large area is used as agricultural land, shows a high probability of sediment yield, so it is highly likely to damage the wetland by topsoil erosion.

본 연구는 강우로부터 나타나는 표토침식과 퇴적의 영향을 고려하여 습지 훼손에 대한 정량적인 평가가 가능한 방안을 제시하고자 하였다. 용담댐 상류에 위치하고 있는 천천유역은 16개의 습지가 존재하며, 습지훼손 가능성에 대한 평가는 호수형습지와 소택지를 대상으로 이뤄졌다. 2002년, 2003년에 발생한 태풍사상을 적용한 결과, 벽남제습지의 경우 상류유역에서 유입되는 토사량은 저수용량의 2.30%(22,548 ㎥)로 가장 높았다. 산지영역에 위치하고 있는 소택지의 평균 유입토사량은 저수용량의 0.03%로 나타났으며 비교적 넓은 유역을 가지는 호수형습지보다 훼손가능성이 낮은 것으로 분석되었다. 넓은 면적이 농경지로 사용되고 있는 호수형습지는 모형의 결과에서 토사유입량이 높은 것으로 나타나 토양침식에 의한 습지훼손 가능성이 높을 것으로 판단된다.

Keywords

References

  1. Bennett, J.P. (1974). "Concepts of mathematical modelling of sediment yield." Water Resources Research, Vol. 10, pp. 485-492. https://doi.org/10.1029/WR010i003p00485
  2. Cha, E.J., Hamm, S.Y., Kim, H.J., Lee, J.H., and Ok, S.I. (2010). "Physical and chemical properties of soil in Jang-San wetland, Busan metropolitan city." Journal of the Environmental Sciences, Vol. 19, No. 11, pp. 1363-1374. https://doi.org/10.5322/JES.2010.19.11.1363
  3. Davidson, N.C. (2014). "How much wetland has the world lost? Long-term and recent trends in global 295 wetland area." Marine and Freshwater Research, Vol. 65, No. 10, pp. 934-941. https://doi.org/10.1071/MF14173
  4. Engelund, F.A., and Hansen, E. (1967). A monograph on sediment transport in alluvial Streams. Technical University of Denmark 0stervoldgade 10, Copenhagen K, Denmark.
  5. Gulbin, S., Kirilenko, A.P., Kharel, G., and Zhang, X. (2019). "Wetland loss impact on long term flood risk in a closed watershed." Environmental Science and Policy, Vol. 94, pp. 112-122. https://doi.org/10.1016/j.envsci.2018.12.032
  6. Hu, S., Niu, Z., Chen, Y., Li, L., and Zhang, H. (2017). "Global wetlands: Potential distribution, wetland loss, and status." Science of the Total Environment, Vol. 586, pp. 319-327. https://doi.org/10.1016/j.scitotenv.2017.02.001
  7. Janse, J.H., van Dam, A.A., Hes, E.M., de Klein, J.J., Finlayson, C. M., Janseen, A.B., van Wijk, D., Mooij, W.M., and Verhoeven, J.T. (2019). "Towards a global model for wetlands ecosystem services." Current Opinion in Environmental Sustainability, Vol. 36, pp. 11-19. https://doi.org/10.1016/j.cosust.2018.09.002
  8. Kim, H. (2001). "Introduction of hydrology/hydraulic analysis for wetlands design." Journal of Korea Water Resources Association, Vol. 34, No. 5, pp. 23-30.
  9. Kim, S.W. (2019). Estimation of topsoil erosion considering physical characteristics of rainfall intensity and overland flow. Ph. D. dissertation, Chungnam National University, p. 80.
  10. Kim, S.W., Jeong, A.C., Lee, G.H., and Jung, K.S. (2018). "Estimation of the kinetic energy of raindrops for hourly rainfall considering the rainfall particle distribution." Journal of the Korean Geoenvironmental Society, Vol. 19, No. 12, pp. 15-23. https://doi.org/10.14481/JKGES.2018.19.12.15
  11. Kirkby, M.J. (1980). "Modelling water erosion processes." Soil erosion, Edited by Kirkby, M.J., and Morgan, R.P.C., Wiley, Chichester, U.K., pp. 183-216.
  12. K-water (2002). Hydrological investigation report of Yongdam dam basin.
  13. K-water (2003). Hydrological investigation report of Yongdam dam basin.
  14. Lee, G.H., Yu, W.S., Jang, C.L., and Jung, K.S. (2010). "Analysis on spatiotemporal variability of erosion and deposition using a distributed hydrologic model." Journal of Korea Water Resources Association, Vol. 51, No. 3, pp. 221-233. https://doi.org/10.3741/JKWRA.2018.51.3.221
  15. Lee, S., Yeo, I.Y., Lang, M.W., Sadeghi, A.M., McCarty, G.W., Moglen, G.E., and Evenson, G.R. (2018). "Assessing the cumulative impacts of geographically isolated wetlands on watershed hydrology using the SWAT model coupled with improved wetland modules." Journal of Environmental Management, Vol. 223, pp. 37-48. https://doi.org/10.1016/j.jenvman.2018.06.006
  16. Li, Z.W., Zhang, G.H., Geng, R., and Wang, H. (2015). "Rill erodibility as influenced by soil and land use in a small watershed of the Loess Plateau, China." Biosystems Engineering, Vol. 129, pp. 248-257. https://doi.org/10.1016/j.biosystemseng.2014.11.002
  17. Ministry of Environment (ME) (2019). Treasure house of biodiversity, wetlands are disappearing.
  18. Morgan, R.P.C., Quinton, J.N., Smith, R.E., Govers, G., Poesen, J. W.A., Auerswald, K., Chisci, G., Torri, D., and Styczen, M.E. (1998). "The European soil erosion model (EUROSEM): A dynamic approach for predicting sediment transport from fields and small catchments." Earth Surface Processes and Landforms, Vol. 23, pp. 527-544. https://doi.org/10.1002/(SICI)1096-9837(199806)23:6<527::AID-ESP868>3.0.CO;2-5
  19. National Wetlands Center (NWC) (2017). Nationwide inland wetlands monitoring I-General, Gangwon4, Gyeongsang3.
  20. Rho, P. (2007). "Spatio-temporal dynamics of esturine wetlands related to watershed characteristics in the Han river estuary." Journal of the Korean Geographical society, Vol. 42, No. 3, pp. 344-354.
  21. Rojas, C., Munizaga, J., Rojas, O., Martinez, C., and Pino, J. (2019). "Urban development versus wetland loss in a coastal Latin American city: Lessons for sustainable land use planning." Land Use Policy, Vol. 80, pp. 47-56. https://doi.org/10.1016/j.landusepol.2018.09.036
  22. Sorooshian, S., and Gupta, V. K. (1995). "Model calibration." Computer Models of Watershed Hydrology, Vol. 1, pp. 23-68.
  23. Torri, D., Sfalanga, M., and Del Sette, M. (1987). "Splash detachment: Runoff depth and soil cohesion." Catena, Vol. 14, pp. 149-155. https://doi.org/10.1016/S0341-8162(87)80013-9
  24. Yu, W., Park, J., Yang, J., Lim, K.J., Kim, S.C., Park, Y.S., and Lee, G. (2017). "Development and application of a physics-based soil erosion model." Journal of Soil and Groundwater Environment, Vol. 22, No. 6, pp. 66-73. https://doi.org/10.7857/JSGE.2017.22.6.066