DOI QR코드

DOI QR Code

Experimental and Analytical Study on the Water Level Detection and Early Warning System with Intelligent CCTV

지능형 CCTV를 이용한 수위감지 경보시스템에 대한 실험 및 해석적 연구

  • Hong, Sangwan (Strategic Planning Team, UDP Technology Ltd.) ;
  • Park, Youngjin (Disaster Information Research Division, National Disaster Management Institute) ;
  • Lee, Hacheol (Dept. of Information and Communication Eng., Yuhan University)
  • Received : 2014.03.08
  • Accepted : 2014.03.12
  • Published : 2014.03.31

Abstract

In this research, we developed video analytic algorithms to detect water-level automatically and a system for proactive alarming using intelligent CCTV cameras. We applied these algorithms and a system to test-beds and verified for practical use. We made camera-selection policies and operation plans to keep the detection accuracy high and to optimize the suitability for the ever-changing weather condition, while the environmental factors such as camera shaking and weather condition can affect to detection accuracy. The estimation result of algorithms showed 90% detection accuracy for all CCTV camera types. For water level detection, NIR camera performed great. NIR camera performed over 95% accuracy in day or night, suitable in natural weather condition such as shaking condition, fog, and low light, needs similar installment skills with common cameras, and spends only 15% high cost. As a result, we practically tested water level detection algorithms and operation system based on intelligent CCTV camera. Furthermore, we expect the positive evidences when it is applied for public use.

본 연구에서는 지능형 CCTV를 이용하여 자동 수위감지 알고리즘과 사전 경보시스템을 개발하고 Test-Bed에 적용하여 실용화 가능성을 검증하고자 한다. 이를 위하여 현장여건에 적합한 지능형 CCTV 기반의 자동 수위감지 알고리즘을 개발하고 자동인식률 가변 요소에 대한 성능저하 방지대책을 수립하여 CCTV 카메라 기종별 수위감지 성능과 적합성을 평가하고 실용화에 따른 최적 적용방안을 도출한다. 그 결과, CCTV 카메라 기종별 수위감지 성능이 90%으로 도출되었다. CCTV 카메라 기종에 따른 적합성 평가 결과, 자동 수위감지용으로 NIR카메라가 정밀도에서 주 야간 95%이상의 성능을, 떨림 안개 저조도 등 자연환경에서 가장 우수한 성능을, 설치용이성에서는 일반카메라와 대등한 성능을, 가격측면에서 일반카메라 대비 15% 최소 상승분으로 가장 우수했다. 따라서 본 연구개발의 성과물인 지능형 CCTV를 이용한 수위감지 경보시스템의 실용화 가능성을 확인하였으며 향후 실용화가 예상된다.

Keywords

References

  1. Jeong Taeseong, Jin Gyeonghyeok, Choi Seonhwa, Ku Sinhoe, Kwuan Dohyeon, National Disaster Management Institute (2008). Development of decision support system for mitigation of flood related damage. National Disaster Management Institute, Seoul.
  2. Minister of Land, Infrastructure, Park Jeongrim, Dongbu Engineering (2008). Complement the Basic plan of Foold Risk Map. Minister of Land, Infrastructure, Seoul.
  3. Korea Water Resources Corporation (2008), Flood disaster management Geographic Information System in Pyeongtaek, Korea Water Resources Corporation, KIWE-HRC-08-14.
  4. John Honovich (2012). Selection Standard of Video Analytics : How to Select Video Analytics. IPVM, http://ipvm.com/report/how_to_select_video_analytics.
  5. Natinal Disaster Management Institute (2013). A study on Mid-Long term planning for CCTV based Smart Disaster Management. Natinal Disaster Management Institute, Seoul.
  6. A Study of Quality Evaluation Model for Intelligent Video Surveillance Solution(2010)
  7. Korea Information Security Center (2010). Final Report : A Study on Construction DB and Certification Test Plans for Intelligent CCTV based on Behavior. Korea Information Security Center, KISA-WP-2012-0060.
  8. Digital Image Processing 2nd, Rafael C. Conzalez, Richard E. Woods. A probabilistic model for flood detection in video sequences, Paulo Vinicius Koerich Borges, Joceli Mayer, Ebroul Izquierdo OpenCV, http://opencv.willowgarage.com/wiki/
  9. Bilateral Filtering for Gray and Color Images, http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html.

Cited by

  1. 가버 필터를 사용한 철도 콘크리트 궤도 도상의 자동 균열 감지 개발 vol.14, pp.4, 2018, https://doi.org/10.15683/kosdi.2018.12.31.458
  2. Region growing 기법을 적용한 영상기반 수위감지 알고리즘 개선에 대한 연구 vol.36, pp.5, 2020, https://doi.org/10.7780/kjrs.2020.36.5.4.9