• 제목/요약/키워드: Viscous flow

검색결과 976건 처리시간 0.032초

급 출발하는 반원형 실린더에 의한 초기 후류거동의 시뮬레이션 (Simulations of the early wake behavior induced by an impulsively started a semicircualr cylinder)

  • 조지영;이상환;진동식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.349-352
    • /
    • 2002
  • The time-development of the wake vortices of the unsteady viscous flow past a semicircular cylinder is simulated using the vortex particle methods for direct numerical simulations(DNS). The early wake behaviour of the flow behind an impulsively started a semicircualr cylinder is evaluated for a range of Reynolds numbers between 60 and 200 with opposite body configurations respectively. The diffusion scheme based on the particle strength exchange(PSE) is used to account far the viscous effect accurately. And the vorticity generation algorithm to enforce the no-slip boundary conditions is employed. In order to redistribute particles efficiently on the distorted Lagrangian grid the particle distribution technique is adaptively revised, while maintaining the uniform resolution. The results of the simulations are compared to other experimental results.

  • PDF

알콜 탈수법에 의한 Mn-Zn Ferrite 분체 제조시 pH의 영향 (Effect of pH on the Preparation of Manganese Zinc Ferrite Powder by Alcoholic Dehydration of Citrate/formate Solution)

  • 김창범;신효순;이대희;김창현;이병교
    • 한국세라믹학회지
    • /
    • 제32권10호
    • /
    • pp.1123-1130
    • /
    • 1995
  • In the preparation of manganese zinc ferrite powders by alcoholic dehydration of citrate/formate solution. The effect of pH change on precipitation was investigated. The pH range for obtaining stable precipitates was studied. The glassy phase was obtained when the pH value of solution is higher than 5, and the formation mechanism of glassy phase was suggested. Below pH 5, the stable precipitates were formed, and the optimal pH was 2. Formation of glassy phase was accounted for the change of surface charge by pH change. The change of surface charge is caused by the interparticular agglomeration. The precipitate was redissolved into the water on the surface of precipitate itself and through the polymerization, it agglomerated. This mechanism is tought to be similar to that of viscous flow.

  • PDF

Three-dimensional incompressible viscous solutions based on the unsteady physical curvilinear coordinate system

  • Lee S. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1998년도 춘계 학술대회논문집
    • /
    • pp.43-48
    • /
    • 1998
  • The development of unsteady three-dimensional incompressible viscous solver based on unsteady physical curvilinear coordinate system is presented. A 12-point finite analytic scheme based on local uniform grid spacing is extended for nonuniform grid spacing. The formulation of a condition is suggested to avoid the oscillation of the series summations produced by the application of the method of separation of variables. SIMPLER and pressure Poisson equation techniques are used for solving a velocity-pressure coupled problem. The matrix is solved using the Generalized Minimal RESidual (GMRES) method to enhance the convergence rate of unsteady flow solver and the Kinematic boundary condition of a free surface flow. It is demonstrated that the numerical solutions of these equations are less mesh sensitive.

  • PDF

Zr계 벌크 비정질 합금의 미세성형 및 평가기술 개발 (Development of nano/micro forming and evaluation technology of Zr-base bulk metallic glass)

  • 옥명렬;서진유;정성재;홍경태;지영수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 추계학술대회논문집
    • /
    • pp.44-47
    • /
    • 2004
  • Although bulk metallic glasses have many outstanding aspects in their chemical, mechanical or functional properties, some critical problems still hinder their wide application. The most important one is the brittle nature of them, which is the serious problem to structural application. So, to use viscous flow is now the only competent way to form bulk metallic glass. In this study, we investigated the basic nature of viscous flow of Zr-base bulk metallic glass, vitrelloy 1, in terms of process variables. The results were used to design the thermo-mechanical process composed of heating, holding, pressing, and cooling, which have unique influence on the glass transition and crystallization behavior. We adopted small load scale and dies with nano/micro patterns on them. The results were evaluated using several analytical methods.

  • PDF

EFFECTS OF SORET AND DUFOUR ON NATURAL CONVECTIVE FLUID FLOW PAST A VERTICAL PLATE EMBEDDED IN POROUS MEDIUM IN PRESENCE OF THERMAL RADIATION VIA FEM

  • RAJU, R. SRINIVASA
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제20권4호
    • /
    • pp.309-332
    • /
    • 2016
  • Finite element method has been applied to solve the fundamental governing equations of natural convective, electrically conducting, incompressible fluid flow past an infinite vertical plate surrounded by porous medium in presence of thermal radiation, viscous dissipation, Soret and Dufour effects. In this research work, the results of coupled partial differential equations are found numerically by applying finite element technique. The sway of significant parameters such as Soret number, Dufour number, Grashof number for heat and mass transfer, Magnetic field parameter, Thermal radiation parameter, Permeability parameter on velocity, temperature and concentration evaluations in the boundary layer region are examined in detail and the results are shown in graphically. Furthermore, the effect of these parameters on local skin friction coefficient, local Nusselt number and Sherwood numbers is also investigated. A very good agreement is noticed between the present results and previous published works in some limiting cases.

Entropy analysis in a cilia transport of nanofluid under the influence of magnetic field

  • Abrar, Muhammad N.;Haq, Rizwan Ul;Awais, Muhammad;Rashid, Irfan
    • Nuclear Engineering and Technology
    • /
    • 제49권8호
    • /
    • pp.1680-1688
    • /
    • 2017
  • In this study, analysis is performed on entropy generation during cilia transport of water based titanium dioxide nanoparticles in the presence of viscous dissipation. Moreover, thermal heat flux is considered at the surface of a channel with ciliated walls. Mathematical formulation is constructed in the form of nonlinear partial differential equations. Making use of suitable variables, the set of partial differential equations is reduced to coupled nonlinear ordinary differential equations. Closed form exact solutions are obtained for velocity, temperature, and pressure gradient. Graphical illustrations for emerging flow parameters, such as Hartmann number (Ha), Brinkmann number (Br), radiation parameter (Rn), and flow rate, have been prepared in order to capture the physical behavior of these parameters. The main goal (i.e., the minimizing of entropy generation) of the second law of thermodynamics can be achieved by decreasing the magnitude of Br, Ha and ${\Lambda}$ parameters.

A numerical parametric study on hydrofoil interaction in tandem

  • Kinaci, Omer Kemal
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권1호
    • /
    • pp.25-40
    • /
    • 2015
  • Understanding the effects of the parameters affecting the interaction of tandem hydrofoil system is a crucial subject in order to fully comprehend the aero/hydrodynamics of any vehicle moving inside a fluid. This study covers a parametric study on tandem hydrofoil interaction in both potential and viscous fluids using iterative Boundary Element Method (BEM) and RANSE. BEM allows a quick estimation of the flow around bodies and may be used for practical purposes to assess the interaction inside the fluid. The produced results are verified by conformal mapping and Finite Volume Method (FVM). RANSE is used for viscous flow conditions to assess the effects of viscosity compared to the inviscid solutions proposed by BEM. Six different parameters are investigated and they are the effects of distance, thickness, angle of attack, chord length, aspect ratio and tapered wings. A generalized 2-D code is developed implementing the iterative procedure and is adapted to generate results. Effects of free surface and cavitation are ignored. It is believed that the present work will provide insight into the parametric interference between hydrofoils inside the fluid.

셀중심법에 의한 축대칭 극소 로봇의 압축팽창운동에 대한 수치적인 연구 (A Numerical Simulation based on Cell-centered Scheme for Contractive and Dilative Motion on Axisymmetric Micro-hydro machine)

  • 강효길;김문찬;전호환
    • 대한조선학회논문집
    • /
    • 제41권2호
    • /
    • pp.90-97
    • /
    • 2004
  • Flow mechanism of contractive and dilative motion is numerically investigated to obtain a propulsive force in highly viscous fluid. An axisymmetric code is developed with unstructured grid system based on cell-centered scheme. It is validated by comparing with the results of Stokes approximation for the problem of uniform flow past a sphere in low Reynolds number(R$_{n}$=1). The validated code is applied to the simulation of contractive and dilative periodic motion of body whose results are quantitatively compared with the two dimensional case. In order to investigate the grid dependency, two different grids are applied to the present computations. The present study provides key information for the development of an axisymmetric Micro-hydro-robot.t.

2차원 비압축성 점성유동에 관한 무격자법 기반의 수치해석 (NUMERICAL STUDY ON TWO-DIMENSIONAL INCOMPRESSIBLE VISCOUS FLOW BASED ON GRIDLESS METHOD)

  • 정세민;박종천;허재경
    • 한국전산유체공학회지
    • /
    • 제14권4호
    • /
    • pp.93-100
    • /
    • 2009
  • The gridless (or meshfree) methods, such as MPS, SPH, FPM an so forth, are feasible and robust for the problems with moving boundary and/or complicated boundary shapes, because these methods do not need to generate a grid system. In this study, a gridless solver, which is based on the combination of moving least square interpolations on a cloud of points with point collocation for evaluating the derivatives of governing equations, is presented for two-dimensional unsteady incompressible Navier-Stokes problem in the low Reynolds number. A MAC-type algorithm was adopted and the Poission equation for the pressure was solved successively in the moving least square sense. Some typical problems were solved by the presented solver for the validation and the results obtained were compared with analytic solutions and the numerical results by conventional CFD methods, such as a FVM.

점성 유동장에서 운동하는 구조체의 유탄성 해석 (Fluid-Structure Interaction Analysis for Structure in Viscous Flow)

  • 노인식;신상묵
    • 대한조선학회논문집
    • /
    • 제45권2호
    • /
    • pp.168-174
    • /
    • 2008
  • To calculate the fluid-structure interaction(FSI) problem rationally, it should be the basic technology to analyse each domain of fluid and structure accurately. In this paper, a new FSI analysis algorithm was introduced using the 3D solid finite element for structural analysis and CFD code based on the HCIB method for viscous flow analysis. The fluid and structural domain were analysed successively and alternatively in time domain. The structural domain was analysed by the Newmark-b direct time integration scheme using the pressure field calculated by the CFD code. The results for example calculation were compared with other research and it was shown that those coincided each other. So we can conclude that the developed algorithm can be applied to the general FSI problems.