Acknowledgement
Supported by : Yildiz Technical University
References
- ANSYS Fluent, 2011. ANSYSfluent user's guide, release 14.0. PA: ANSYS Fluent.
- Abbott, I.H. and Von Doenhoff, A.E., 1959. Theory of wing sections - including a summary of airfoil data. New York: Dover Publications, Inc.
- Bal, S., 2008a. Performance prediction of surface piercing bodies in numerical towing tank. International Journal of Off shore and Polar Engineering, 18(2), pp. 106-111.
- Bal, S., 2008b. Prediction of wave pattern and wave resistance of surface piercing bodies by a boundary element method. International Journalfor Numerical Methods in Fluids, 56(3), pp.305-329. https://doi.org/10.1002/fld.1527
- Bal, S., 2011. The effect of finite depth on 2-d and 3-d cavitating hydrofoils. Journal of Marine Science and Technology, 16(2), pp.129-142. https://doi.org/10.1007/s00773-011-0117-2
- Bardina, lE., Huang, P.G., Coakley, TJ., 1997. Turbulence modeling validation, testing, and development, NASA Technical Memorandum 110446. California: Ames Research Center.
- Duncan, lH., 1983. The breaking and non-breaking wave resistance of a two-dimensional hydrofoil. Journal of Fluid Mechanics, 126, pp.507-520. https://doi.org/10.1017/S0022112083000294
- Ekinci, S., Celik, F. and Guner, M., 2010. A practical noise prediction method for cavitating marine propellers. Brodogradnja, 61(4), pp.359-366.
- Hino, T., 1983. A finite volume method with unstructred grid for free surface flow simulations. 6th International of Conference on Numerical Ship Hydro, Iowa, USA, August 1983.
- Ghassemi, H., 2009a. The effect of wake flow and skew angle on the ship propeller performance. Scientia Iranica Transaction B - Mechanical Engineering, 16(2), pp.149-158.
- Ghassemi, H., 2009b. Hydrodynamic performance of coaxial contra-rotating propeller (CCRP) for large ships. Polish Maritime Research, 16(1), pp.22-28. https://doi.org/10.2478/v10012-008-0040-6
- Ghassemi, H. and Kohansal, A. R., 2013. Waves generated by a NACA4412 hydrofoil near free surface. Journal of Applied Fluid Mechanics, 6(1), pp.1-6.
- Katz, land Plotkin, A., 1991. Low-speed aerodynamics -from wing theory to panel methods. International Edition. Singapore: McGraw-Hill, Inc ..
- Kinaci, O.K., Kukner, A. and Bal, S., 2011. Interactive effects of 2-d bodies in non-lifting flows. INT-NAM Symposium 2011 , Istanbul, Turkey, October 2011, pp.817-826.
- Kinaci, O.K., Kukner, A. and Bal, S., 2012. A parametric study on tandem hydrofoil interaction. HYDMAN 2012, Ilawa, Poland, September 2012, pp.145-155.
- Kinaci, O.K., 2014. An iterative boundary element method for a wing-in-ground effect. International Journal of Naval Architecture and Ocean Engineering, 6(2), pp.282-296. https://doi.org/10.2478/IJNAOE-2013-0179
- Lee, IT., 1987. A potential based panel method for the analysis of marine propellers in steady flow. Ph. D, MIT.
- Lee, Y.T., Bein, T.W., Feng, J.Z. and Merkle, C.L., 1991. Unsteady flows in rotor-sator cascades. Maryland: David Taylor Research Center.
- Lee, T., 2011. Flow past two in-tandem airfoils undergoing sinusoidal oscillations. Experiments in Fluids, 51(6), pp.1605-1621. https://doi.org/10.1007/s00348-011-1173-4
- Lim, K.B. and Tay, W.B., 2010. Numerical analysis of the s1020 airfoils in tandem under different flapping configurations. Acta Mechanica Sinica, 26(2), pp.191-207. https://doi.org/10.1007/s10409-009-0302-2
- Matveev, K.I. and Matveev, I.I., 2001. Tandem hydrofoil system. Ocean Engineering, 28(2), pp.253-261 . https://doi.org/10.1016/S0029-8018(99)00059-1
- McGlumphy, J., Ng, W.F., Wellbom, S.R and Kempf, S., 2009. Numerical investigation of tandem airfoils for subsonic axial-flow compressor blades. Journal of Turbo machinery - Transactions of the ASME, 131(2), pp.021018. https://doi.org/10.1115/1.2952366
- McGlumphy, J., Ng, W.F., Wellbom, S.R and Kempf, S., 2010. 3D numerical investigation of tandem airfoils for a core compressor rotor. Journal of Turbo machinery - Transactions of the ASME, 132(3), pp.031009. https://doi.org/10.1115/1.3149283
- Muneketa, M., Koshiishi, R, Yoshikawa, H. and Ohba, H., 2008. An experimental study on aerodynamic sound generated from wake interaction of circular cylinder and airfoil with attack angle in tandem. Journal of Thermal Science, 17(3), pp.212-217. https://doi.org/10.1007/s11630-008-0212-9
- Scharpf, D.F. and Mueller, T.J., 1992. Experimental-study ofa low Reynolds number tandem airfoil configuration. Journal of Aircraft, 29(2), pp.231-236. https://doi.org/10.2514/3.46149
-
Shih, T., H., Liou, W., W., Shabbir, A., Yang, Z. and Zhu, J., 1995. A new
$\kappa$ -$\epsilon$ eddy viscosity model for high Reynolds number turbulent flows. Computers and Fluids, 24(3), p.227-238. https://doi.org/10.1016/0045-7930(94)00032-T - Versteeg, H., K. and Malalasekera, W., 2007. An introduction to computationaljluid dynamics - thejinite volume method. Glasgow: Pearson Education Limited.
- Wang, X., Wang, F. and Li, Y.L., 2011. Aerodynamic characteristics of high-lift devices with downward deflection of spoiler. Journal of Aircraft, 48(2), pp.730-735. https://doi.org/10.2514/1.C031301
- Xie, N. and Vassalos, D., 2006. Performance analysis of 3D hydrofoil under free surface. Ocean Enginnering, 34(8-9), pp.1257-1264.
- Zhu, B., Wu, H. and Xiao, T., 2012. Study of aerodynamic interactions of dual flapping airfoils in tandem configurations. Advances in Intelligent Structure and Vibration Control, 160, pp.301-306.
Cited by
- An improvement to the Kunz preconditioner and numerical investigation of hydrofoil interactions in tandem vol.32, pp.4, 2015, https://doi.org/10.1080/10618562.2018.1508655