Let A denote a unital normed algebra over a field K = R or C and let e be the identity of A. Given $a \in A$ and $x \in A$ with $\Vert x \Vert = 1$, let $$ V(A, a, x) = {f(ax) : f \in A', f(x) = 1 = \Vert f \Vert}. $$ Then the (Bonsall and Duncan) numerical range of an element $a \in A$ is defined by $$ V(a) = \cup{V(A, a, x) : x \in A, \Vert x \Vert = 1}, $$ where A' denotes the dual of A. In [2], $V(a) = {f(a) : f \in A', f(e) = 1 = \Vert f \Vert}$.
Assume $H_i : R_+ \times R_+ \to R_+ (i = 1, 2)$ are monotonically increasing (in both variables), homogeneous mapping for which $H_1(tu, tv) = t^p(H_1(u, v) (p > 0)$ and $H_2(u, v)^{t^q} (q \leq 1)$ hold for $t, u, v \geq 0$. Using an idea from the paper of Baker, Lawrence and Zorzitto [2], the superstability problems of the functional inequalities $\Vert f(x+y) - f(x)f(y) \Vert \leq H_i (\Vert x \Vert, \Vert y \Vert)$ shall be investigated.
In this paper, we show that $\Vert \xi \Vert_r = \Vert \sum_{i \in I}x_i x^*_i \Vert^{\frac{1}{2}}, \Vert \xi \Vert_c = \Vert \sum_{i \in I}x^*_ix_i \Vert^{\frac{1}{2}}$ for $\xi = \sum_{i \in I}x_i e_i$ in $M_n(H)$, that subspaces as Hilbert spaces are subspaces as column and row Hilbert spaces, and that the standard dual of column (resp., row) Hilbert spaces is the row (resp., column) Hilbert spaces differently from [1,6]. We define operator Hilbert spaces differently from [10], show that our definition of operator Hilbert spaces is the same as that in [10], show that subspaces as Hilbert spaces are subspaces as operator Hilbert spaces, and for a Hilbert space H we give a matrix norm which is not an operator space norm on H.
We first show that if $\psi : M_n(B(H)) \to M_n (B(H))$ is a $D_n \otimes F(H)$-bimodule map, then there is a matrix $A \in M_n$ such that $\psi = S_A$. Secondly, we show that for an operator space $\varepsilon, A \in M_n$, the Schur product map $S_A : M_n(\varepsilon) \to M_n(\varepsilon)$ and $\phi_A : M_n(\varepsilon) \to \varepsilon$, defined by $\phi_A([x_{ij}]) = \sum^{n}_{i,j=1}{a_{ij}x_{ij}}$, we have $\Vert S_A \Vert = \Vert S_A \Vert_{cb} = \Vert A \Vert_S, \Vert \phi_A \Vert = \Vert \phi_A \Vert_{cb} = \Vert A \Vert_1$ and obtain some characterizations of A for which $S_A$ is contractive.
Let ${X_n : n = 1,2,\cdots}$ be a sequence of pairwise independent identically distributed random vectors taking values in a separable Hilbert space H such that $E \Vert X_1 \Vert = \infty$. Let $S_n = X_1 + X_2 + \cdots + X_n$ and for any real $\alpha$ with $0 < \alpha < 1$ define a sequence ${\gamma_n(\alpha)}$ as $\gamma_n(\alpha) = inf {r : P(\Vert S_n \Vert \leq r) \geq \alpha}$. Then $$ lim_{n \to \infty} sup \Vert S_n \Vert/\gamma_n(\alpha) = \infty $$ holds. This is a generalization of Vvedenskaya[2].
Let $(\Omega, F, P)$ be a probability space with F a $\sigma$-algebra of subsets of the measure space $\Omega$ and P a probability measures on $\Omega$. Suppose $a > 0$ and let $(F_t)_{t \in [0,a]}$ be an increasing family of sub-$\sigma$- algebras of F. If $r > 0$, let $J = [-r, 0]$ and $C(J, R^n)$ the Banach space of all continuous paths $\gamma : J \to R^n$ with the sup-norm $\Vert \gamma \Vert_C = sup_{s \in J} $\mid$\gamma(x)$\mid$$ where $$\mid$\cdot$\mid$$ denotes the Euclidean norm on $R^n$. Let E and F be separable real Banach spaces and L(E,F) be the Banach space of all continuous linear maps $T : E \to F$ with the norm $\Vert T \Vert = sup {$\mid$T(x)$\mid$_F : x \in E, $\mid$x$\mid$_E \leq 1}$.
Consider an unknown regression function f of the response Y on a d-dimensional measurement variable X. It is assumed that f belongs to a tensor Sobolev space. Let T denote a differential operator. Let $\hat{T}_n$ denote an estimator of T(f) based on a random sample of size n from the distribution of (X, Y), and let $\Vert \hat{T}_n - T(f) \Vert_2$ be the usual $L_2$ norm of the restriction of $\hat{T}_n - T(f)$ to a subset of $R^d$. Under appropriate regularity conditions, the optimal rate of convergence for $\Vert \hat{T}_n - T(f) \Vert_2$ is discussed.
In their paper [2,3], Cameron and Storvick introduced some classes $S"+m$ and of functionals on classical Wiener spaces $C_0[a,b]$. For such functionals, they showed that the analytic Feynman integral exists and they gave some formulas for this integral. Moreover they obtained that the functionals of the form $$ (1.1) F(x) = exp {\int^b_a{\theta(s,x(x))dx} $$ are in S" where they assumbed that the potential $\delta : [a,b] \times R \to C$ satisfies (i) for each $s \in [a,b], \theta(s,\cdot)$ is the Fourier-Stieltjes transform of $\sigma_s \in M(R)$, (ii) for each Borel subset E of $[a,b] \times R, \sigma_s (E^{(s)})$ is a Borel measurable function of s on [a,b], and (iii) the total variation $\Vert \sigma_s \Vert$ of $\sigma_s$ is bounded as a function of s.tion of s.
목 적: 온보드 영상장치(OBI) 및 콘빔 CT (CBCT)를 이용하면 치료실에 위치한 환자의 자세 및 위치와 모의치료(SIMULATION) 시점의 환자의 자세 및 위치를 비교할 수 있다. Detected offsets은 실제로 적용된 인체팬톰(Rando phantom) 위치의 오차와 비교되어 진다. 이후, 인체 팬톰은 detected 오차에 근거하여 couch를 움직여 위치선정 되었다. 또한 인체팬톰 위치 결정의 실측값과 이론값 오차값들을 비교하였으며, OBI를 사용하고 있는 KV X선영상의 2D와 CBCT의 3D 타켓 위치 정확성 평가하고자 한다. 대상 및 방법: 신체 내부 구조가 모사된 팬톰(The Rando Phantom, Alderson Resarch Laboratories Inc. Stamford. CT, USA)을 사용하여 실제방사선 치료와 동일한 과정을 따라 모의치료(SIMULATION) 및 치료계획(RTP)을 시행한 후 치료 데이블 위에 인체 팬톰을 셋업한다. 정확히 위치가 재현된다고 가정되는 인체팬톰에 대해 3가지 방법으로 실험을 했는데 X, Y, Z축의 변화에 따라 셋업 오차를 측정했고 각각의 실험은 10회씩 반복되어 오차의 표준 편차를 구했다. DigiPas DWL-80G는 기울기의 각을 결정하기 위해 사용하였으며, 2D/2D 및 3D/3D정합의 실측치와 측정치를 비교 분석 하였다. 결 과: 온보드 영상장치로 획득한 정면 및 측면 kv x선 영상과 모의치료시 디지털 재구성 기준영상과의 2차원/2차원 정합시, 팬톰의 X, Y, Z 편차 평균값은 lat 0.12 cm, long -0.66 cm, vert 0.07 cm이며, 각도의 변화를 주었을 때 편차의 평균값은 lat -0.5 cm, long -0.3 cm, 팬톰의 몸을 약간 튼 상태에서의 편차 평균값은 각각 lat -0.5 cm, long 0.2 cm, vert -0.6 cm으로 나타났다. 또한 콘빔CT로 획득한 영상과 모의치료 시 획득한 CT영상을 비교하는 3차원/3차원 정합에서 팬톰의 3가지 방법에서 편차의 평균 detection error와 표준편차는 lateral $0.5{\pm}0.4\;mm$, longitudinal $0.8{\pm}0.5\;mm$, vertical $0.4{\pm}0.3\;mm$로 각각 0-10 mm의 범위이다. Residual error에 해당되는 positioning couch shift 변수는 $0.6{\pm}0.3\;mm$, $0.5{\pm}0.3\;mm$, $0.3{\pm}0.1\;mm$이다. 20-50 mm까지 longitudinal shift에 의한 평균 detection error는 각각 lateral $0.4{\pm}0.2\;mm$, longitudinal $0.3{\pm}0.2\;mm$, vertical $0.3{\pm}0.3\;mm$이다. Residual error는 $0.6{\pm}0.3\;mm$, $0.6{\pm}0.2\;mm$, $0.4{\pm}0.1\;mm$이다. Detection error는 모두 0.0~0.6 mm 범위이다. Residual error는 0.3~0.9 mm 범위로 나타났다. 결 론: 온보드 영상장치(OBI) 및 콘빔 CT (CBCT)를 이용하여 표적위치의 정확성을 평가하였다. 치료실에 위치한 환자의 자세 및 위치와 모의치료(SIMULATION) 시점의 환자의 자세 및 위치를 비교할 수 있다. 그러므로 OBI 및 CBCT를 이용한 2D/2D 및 3D/3D 정합은 모의 치료 시와 환자 치료 시 정확한 정합을 함으로써 error를 최소화 할 것으로 평가된다.
2-Step 개방형 시스템은 힐링플랫폼과 개인건강 문서저장소 사이의 중계를 목적으로 제안되었다. 또한 TOS는 프로바이더(provider)의 건강문서 접근/요청 과정을 실시간으로 모니터링 하기 위해 대량 커넥션 기반의 pubsub서비스를 고려하여 설계되었다. TOS에서는 pubsub시의 통신 프로토콜의 용도로 WebSocket을 사용하고 있다. 그러나 힐링플랫폼의 사용자 단말인 모바일 기기의 저품질 무선 네트워크 운영 환경을 감안해볼 때, 전송 프로토콜 뿐 아니라 QoS를 지원하는 메시징 프로토콜 또한 추가될 필요가 있다. MQTT는 모바일 기기에 최적화된 경량 메시징 프로토콜로서 저속/저품질인 무선 네트워크 상황을 감안한 신뢰성 있는 메시징 QoS를 정의하고 있다. 본 논문에서는 힐링플랫폼의 사용자 단말인 모바일 기기를 고려하여 대량의 커넥션 및 펍섭시의 QoS를 지원하는 MQTT 프로토콜 기반의 메시지 브로커를 설계한다. 이를 위해, 우선 TOS와 MQTT 메시지 브로커 간의 모델을 설계하고, 제안 설계를 바탕으로 프로토타입을 구현한 후, 마지막으로 MQTT 클라이언트 툴을 사용한 load-test를 통해 기존연구와의 성능지표를 비교하도록 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.