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JOINT NUMERICAL RANGES IN
NON UNITAL NORMED ALGEBRAS

YOUNGOH YANG

1. Introduction

Let A denote a unital normed algebra over a field K = R or C and
let e be the identity of A. Given a € A and z € A with ||z|| = 1, let

V(4,0,2) = {f(az): f e A, f(z) =1 = ||f]|}.

Then the (Bonsall and Duncan) numerical range of an element a € A is
defined by

Via) =U{V(A4,a,z):z € 4,||z|| = 1},

where A' denotes the dual of A. In [2], V(a) = {f(a): f € A", f(e) =
L=|fII}- (see [1, 2] for details.)

We have two limitations in this numerical range as well as joint nu-
merical range: First this definition of V(A,a) is dependent on the iden-
tity. There are many normed algebras which do not possess an identity.
Therefore it is of some interest to make the notion of relative numerical
range identity-free.

The second limitation is in the definition itself. For @ € A, a normed
algebra, the scalars comprising the numerical range of a are of the form
f(az) wherez € A, f € A',and 1 = ||z|| = ||f|| = f(z). No consideration
is given to scalars of the form f(za), and as will be seen, these are
significant if progress is to be made.

In this paper we introduce the notion of right(left) relative (joint)
numerical range VE(A,a)(VL(A,a)) of an n-tuple a = (ay,...,a,) of
elements in a non unital normed algebra A relative to x € A. (See Def-
inition 2.1) If z = e, the identity of 4 and |le|| = 1, then V.F(A, a)
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coincides with V(a). Thus this concept extends the (Bonsall and Dun-
can) joint numerical range. Among the results, it is shown that our
numerical ranges V,'(4,a) and V2(A,a) are compact convex subsets of
K™, Also we give a sufficient condition for our numerical range to be a
singleton set.

Further, we show that the relative (joint) numerical range of an n-
tuple of elements in a normed algebra is invariant under certain algebra
homomorphism. An example is given to show that the invariance of the
relative numerical range under homomorphism ¢ does not imply that
¢ is an isometry. Also we introduce the concept of regular norm on a
normed algebra and study the invariance of the relative numerical range
under a homomorphism in terms of this concept.

Throughout this paper let A be a non unital normed algebra over a
field K (R or C).

2. Relative numerical ranges of elements

DEFINITION 2.1. Let A be a normed algebra over the field K =R or
C, and A’ its dual. For z € A, we write

D(A,z)={f € A" - |Ifll =1, f(z) = [l=]]}-

Let a = (ay,...,a,) € A" denote an n-tuple of elements in A. The
right relative numerical range of a = (a;,...,a,) € A" relative to z 1s
defined to be VE(4,a) = {(f(a12),..., f(anz)) : f € D(A,z)}. The left
relative numerical range of a = (a1, ...,a,) € A" relative to z is defined
to be VE(4,a) = {(f(za1),...,f(zan)) : f € D(A,z)}. The relative
numerical range of a = (ay,...,a,) € A" relative to = is defined to
be V,(4,a) = VE(A,a) UV} (A, a). The right relative numerical radius
of a relative to z is defined by vB(a) = sup{|A] : A = (A,...,An) €
VE(A, a)}. The left relative numerical radius of a relative to z is defined
by vE(a) = sup{|A]: A = (A1,..., An) € VE(A,a)}. The relative numer-

ical radius of a relative to z is defined by v.(a) = max{vZ(a),vL(a)}.

Note that the set D(A, z) is nonempty by the Hahn-Banach Theorern,
and so V/(A4,a) and V.F(A,a) are nonempty. If A is commutative, then
VE(A a) = VE(A,a) = V,(A,a) as f(aiz) = f(za;), 0 =1,2,...,n).
If z = e(identity of A) with [le|| = 1, then V.(A,a) = V(a), where V(a)
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denotes the (Bonsall and Duncan) joint numerical range of a [1]. Thus
the concept of joint numerical range is a special case of that of relative
numerical range.

LEMMA 2.2. Let a=(a1,...,a,) € A" andb = (by,...,b,) € A™ be
n-tuples of elements in A, and Iet r€Aanda,f e K. Then
(1) Va(A,ea + fb) C aV,(4,a) + BV,(A,b), and Vi (A, aa)

= al;(4,a),
(2) vz(a+b) <wz(a)+ ve(b) and vy(@a) = |afv.(a),
(3) va(a) < max{||az||, ||za||}, where az denotes (a)z,...,a,z).
Proof. (1) Let f € D(A,z). Since f((aa; +ﬁb )z) = af(aiz)+Lf(biz)
and f((aa;)z) = f(a(aiz)) = af(aiz) for i = 1,2,...,n, VR(A, ca +

Bb) C aVE(A,a)+ 8E(A,a) and VE(A, aa) = aVR(A a)

Similar statements hold in terms of V¥ hence taking unions
Vi(A,aa + fb) C aV,(4,a) + 3V,(A,b) and V,(4, aa)—aV(A a).

(2) These follow from (1).
(3) A= (A1,...,An) € Vi(A,a) implies A = (f(ayz),..., f(anz)) or
(f(za1),..., f(zan)) for some f € D(A,z). Hence

n 1/2
Al = [(F(@rz), .., Fanz))] = (Z If(aw)F)

< (Z an?uamﬁ)l/z

= [[(a12, ..., anz)| = ||laz||

or

n 1/2
Al = [(f(zar),..., fzan))] = (Z lf(wai)l2>

n 1/2
< (S Ul
= [|(za1,...,za,)| = lzall.

We note that the inclusion relation in (1) cannot be replaced by the
equality in general e.g. take a = —b.
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LEMMA 2.3. Let a = (aj,...,an) € A and r € A. Then

(1) D(A,z) is a weak* compact convex subset of A'.
(2) VE(A,a) and V,'(A,a) are compact convex subsets of K, hence
V:(A,a) is a compact subset of K.

Proof. (1) Let f,g € D(A,z) and let A be any number in [0,1]. Then
IAF+ (1~ Xgll < M+ (1~ Mgl = 1 and (Af +(1 = \g)(2) = llal.
So [|Af +(1—=X)g|l =1 and Af + (1 — A)g € D(A,z). Therefore D(4,z)
1S convex.

Define e, (f) = f(z). Then e, is weak™ continuous, i.e., continuous in
the pointwise convergence topology on A’. By [3], D = {f € A" : [|f]| <
1} is weak* compact. Hence

D(A,z) = Dne; ' ({lz]})

is a weak* closed subset of D and so is weak™ compact.

(2) Define eq,,(f) = f(aix) (i = 1,...,n). Then e, is weak” continu-
ous for each i = 1,...,n and so the function F : D(A,z) — K" defined
by F(f) = (€a,2(f)s- - €anz(f)) = (f(arz), ..., f(anz)) is weak® con-
tinuous. Hence V,E(A, a) = F(D(A,z)) is a compact subset of K. As F
is linear and D(A, z) is convex, V,F(A, a) is convex. Similarly VE(A a)is
a compact convex subset of K™. Hence V;(A,a) = VA(A,a)UVE(A, a)
is a compact subset of K.

THEOREM 2.4. Let a = (a1,...,an) € A™ and let = be any nonzero
element of A. Then
(1) Ifa;z =z foralli =1,...,n, then VR(A a) = {||z]|(1,...,1)}.
(2) If VE(A,a) = {||z||(1,...,1)}, then either a;z =z or
0 < dist(z, Ka;x) < ||z|| for all «.

Proof. (1) This follows from the definition.

(2) Suppose that V,(4,a) = {||z[|(1,...,1)}. First we note that
dist (z, Ka;z) = infy ||z — Aa;z|| < ||z|| for e =1,...,n.

If dist (z, Ka;z) = ||z|| for some ¢(1 < ¢ < n), then since [|z|| # O,
z ¢ Ka;z, and so by ([3, p. 82] or [4, p.64]) there exists f € A’ such
that ||f|| = 1, f(z) = ||z]| and f(aiz) = 0. Thus (f(a;z),..., f(aiz),.. .,
flanz)) = (flar2),...,0,..., flanz)) # |2ll(1,...,1,...,1) This is a

contradiction to our hypothesis. Hence dist(z, Kaiz) < ||z| for all 2.
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If 0 = dist(z, Ka;z) for some i(1 < ¢ < n), then by our hypothesis
T = a;z.

We have the similar statement for the left relative numerical range:

THEOREM 2.5. Let a = (ay,...,a,) € A and let = be any nonzero
element of A. Then

(1) za; =z foreachi =1,...,n, then VF(A,a) = {||z||(1,...,1)}.
(2) If VE(A,a) = {||z||(1,...,1)}, then either za; = = or
0 < dist(z, Kza;) < ||z|| for all 5.

COROLLARY 2.6. Ifa € A, and a® = a, then

Va(A,(a,...a)) = {|lall(1,...,1)).

LEMMA 2.7. Let a = (a1,...,a,),b = (b1,...,b,) be n-tuples of
elements in A, and let x € A. Let N, = N(0,¢) denote the open ball
at 0 of radius € in K™. If |la — b|| = (3, [la; — b:|>)*/? < ¢, then
VR(4,b) C VE(A,a) + 2|V, and V(A a) € VE(A,b) + 2] N.

Proof. Let A = (Ay,..., ;) € VR(A,b). There exists f € D(A,z)
such that A = (f(b12),..., f(brz)). Thus

[A—(f(a1z),... yflanz))|=|(f(iz), ..., f(baz))—(f(a1z),.. ., flanz))|.

= (,2:; | F((bi ~ ai)x)|2>l/2
) (Z I alel?)

= [[b—alllz] <lz]le.

So A € V,A(A,a) + ||z||N.. Similarly VF(4,a) C VR(A,b) + ||z||N..

REMARK 2.8. The previous lemma is true for the left relative numer-
ical range by a similar proof.
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THEOREM 2.9. Let a = (a1,...,a,),b = (b1,...,bn) be n-tuples of
elements in A, and let z € A and N, = N(0,¢). If ||]a — b|| < ¢, then
Vo(A,b) C V,(A,a) + ||z||N. and V;(4,a) C V. (A4,b) + [|z||N..

Proof. By the Lemma 2.7 and Remark 2.8, V.F(4,a) C V.F(A4,b) +
l|z|| N and VF(4,a) C VF(A,b) + ||z]|Ne. Hence
Va(A,a) = VE(A,a) UVE(4,a)
C (VA b) + [l2llNe) U (V" (4, b) + ||| Ne)
= {VH(A,b)U V(4 b)} + ||z|| N
= V(A b) + ||z||Ne.

Therefore
V.(A,a) C V;(A,b) + l|z|| NVe.

Exchanging a and b,
V:(A,b) C V,(4,a)+ ||z||Ne.

Consider a pair of compact subsets of the n-dimensional Euclidean
space, M and N and define d(M,N) = inf{e : M C N + N, N C
M +N.}. Then for a = (a1,...,a,),b= (b1,...,bn) € A" and z € A we
can consider d(V.E(A,a), VE(A, b)) as a metric, the “Hausdorff metric”
on sets associated with a = (a;,...,a,) and b = (by, .., by).

THEOREM 2.10. For each ¢ € A, VE(.) is a continuous function from
A™ endowed with the norm topology to the family of compact subsets
of K™, endowed with the Hausdorff metric topology. Also vR(.) is a
continuous real-valued function on A™.

Proof. Let a = (a1,...,a,),b = (b1,...,bs) € A™ with |la—b|| <e.
Then by Lemma 2.7,
d(VF(A,a), V' (4,b)) < e|z],

and so V.2(.) is continuous.
Also vf(a) < vE(b)+¢lz|| and vf(b) < v7(a) +e|lz| imply [v]*(a) -
vE(b)| < ¢|lz]|. So vE(-) is a continuous function.



Joint numerical ranges in non unital normed algebras 843

REMARK 2.11.

(1) The previous theorem is true for the left relative numerical range
V. and numerical radius v’.

(2) The previous theorem is true for the relative numerical range V;
and numerical radius v,.

The following theorem gives the invariance of relative numerical
ranges under isometric algebraic homomorphism.

THEOREM 2.12. Let ¢ be an isometric algebraic homomorphism of a
normed algebra A into a normed algebra B and let x € A. Then

VE (B, ($(ar),. .., d(an)) = VE(4,a)

for all a = (ay,...,an) € A™.

Proof. Let A = (A1,..., ) € qu%z)(B,(é(al),...,qb(an))). Then
there exists ¢ € D(B, ¢(z)) such that A = (g(é(a1z)),...,9(¢(anz))).
Define f on A by f(z) = g¢(¢4(z)),z € A. Clearly, f is linear and
|Ifll < 1. Since ¢ is an isometry, ||¢(z)|| = ||z|| implies ||f|| = 1 and
so A = (f(arz),..., flanz)) € VE(A, a).

Conversely if g = (p1,...,4n) € VE(A,a), then there exists f €
D(A,z) such that u = (f(a1z),..., f(anz)). Define g on ¢(A) = {¢(2) :
z € A} by g(é(z)) = f(2),z € A. Then again we see that g is a bounded
linear functional on ¢(A) with ||g|| = 1 because ¢ is an isometry. By ({3,
p.81] or [4, p. 63]) g can be extended to a bounded linear functional h
on B with ||k]| = ||g]| = 1 and h(¢(2)) = f(z) for any z € A. Hence

p=(flarz),..., flanz))
= (9(8(a12)),. .-, 9(¢(anz)))
= (h($(ar2)), - ., h($(anz))) € Vginy(B, ($(ar),. .., ¢(an))).

REMARK 2.13. The previous theorem is true for the left relative nu-
merical range.
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COROLLARY 2.14. Let ¢ be an isometric algebraic homomorphism of
a normed algebra A into a normed algebra B, and let z € A. Then

V¢(x)(37 (d)(al )’ SRR ¢(an))) = Vr(Aa a)
for alla = (ay,...,a,) € A™.
We note that the invariance of relative numerical ranges under an
algebraic homomorphism in Theorem 2.12 does not imply isometry. For

we consider an algebra A having divisors of zero, a # 0,b # 0,ab = 0
and a zero homomorphism ¢ of A into an arbitrary algebra B. Then

ViE(A,a) = {0} = Vﬁb)(B,(;S(a)) but ¢ is not an isometry. Another
example is

EXAMPLE 2.15. Let X be a normed space. Consider
Y:{[i] cz€X,AeC).

Let B(Y') denote the algebra of all bounded linear operators on Y. If

0 w
B, _{[O 0] tw € X},
then Bj is a subalgebra of B(Y). Let a = (a1,...,a,) € BT and z € B,.
Then by Theorem 2.12 we have

VE(By,a) = Vi (B(Y),(Tay,- ... Ta,)) = {(0,...,0)}
and
VE(Bi,a) = VE(B(Y), (Tuy,-- -, Ta,)) = {(0,...,0)}
where ¢ : B(Y) — B(Y),¢(z) = T, is an algebraic homomorphism.
(T, is an operator given by T,y = zy for y € Y.) Hence
Ve(By,a) = Vi (B(Y),(Tyy, .-, Ta,)) = {(0,...,0)}.
But the mapping ¢|p, : By — B(Y) is an algebra homomorphism,
though not an isometry because for u,v € X,
0 w|[|0 »|_ (0 O
0 0{{0 Oy |0 O}
The following is a good generalization of the Bonsall and Duncan’s

result which is a particular case of Corollary 2.14 (put ¢ =¢: A — B
identity map).
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COROLLARY 2.16. If B is a subalgebra of a normed algebra A, z € B,
and b = (by,...,b,) € B", then V;(B,b) = V,(A,b).

DEFINITION 2.17. Let A be a normed algebra over K. An element

a € A is said to have right(left) regular norm if

lall = sup [laz|| (llaf = sup [zal).

z||<1 llzli<1

If each a € A has right(left) regular norm, then A is said to have
right(left) regular norm.

The following theorem is an application of Theorem 2.12.

THEOREM 2.18. Let A be a normed algebra with right regular norm.
Suppose B(A) is the algebra of all bounded linear operators on A. Then
for x = (z1,...,2,) € A® and y € A,

VyR(A’x) = VCE(B(A)a (T11 g 7Tzn))a

where T, is the left regular representation on A.

Proof. The function ¢ : A — B(A) defined by ¢(a) = T, is an
algebraic homomorphism. Since A has right regular norm, ||7,| =
sup);;<i1 llazl| = |le||, and so ¢ is an isometric. Hence by Theorem
2.12, the theorem follows.

REMARK 2.19. The previous theorem is true for the left relative nu-
merical range.

COROLLARY 2.20. Let A be a normed algebra with right regular
norm. Suppose B(A) is the algebra of all bounded linear operators on
A. Then for x = (z1,...,2,) € A™ and y € A,

Vy(A,x) = Vr,(B(A), (Ty,, ..., Tz,)),

where T, is the left regular representation or on A.
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