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THE ANALYTIC FEYNMAN INTEGRAL OVER
PATHS IN ABSTRACT WIENER SPACE

IL Yoo

1. Introduction

In their papers [2,3], Cameron and Storvick introduced some classes
Sy, and S" of functionals on classical Wiener space Cyla,d]. For such
functionals, they showed that the analytic Feynman integral exists and
they gave some formulas for this integral. Moreover they obtained that
the functionals of the form

(1.1) F(z)=-exp { ‘/ab (s, x(s))ds}

are in S" where they assumed that the potential 6 : [a,b] x R — C
satisfies (i) for each s € [a, b], 6(s, -) is the Fourier-Stieltjes transform of
oy € M(R), (ii) for each Borel subset E of [a,b] x R, 0,(E®)) is a Borel
measurable function of s on [a,b], and (iii) the total variation | o, ||
of o, is bounded as a function of s. Also, under some measurability
assumptions, they proved in [3] that the analytic Feynman integral of
functionals which are essentially of the form (1.1) gives a solution to an
integral equation formally equivalent to Schroedinger equation. Further,
Johnson and Skoug [6,7] extended the results of {2,3] to arbitrary dimen-
sion under somewhat less stringent conditions on 6. Also Kallianpur
and his coworkers introduced the analytic Feynran integral on abstract
Wiener space B with its related topics [8,9].
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Let (B,B(B), m) be an abstract Wiener space and let C'g denote the
set of all B-valued continuous functions on [0,T] into B which vanish
at origin. From [10] it follows that Cp is a real separable Banach space
with the norm

(1.2) Iz llca= sup | 2(s) ||n
s€{0,T)

and the minimal o-algebra making the mapping x -— z(s) measurable
consists of the Borel subsets of Cg. Moreover the Brownian motion in B
induces a probability measure mp on (Cp,B(Cp)) which is mean-zero
Gaussian.

In [12] Ryu introduced an operator-valued function space integral
on Cp except analytic extension. Furthermore the concept of the ana-
lytic Feynman integral has so far been defined on classical Wiener space
Cola,b] and abstract Wiener space B [2,3,6,7,8,9].

In this paper, we define the analytic Feynman integral over Cz and
we prove the existences of this integral for certain classes &! and &" of
functionals on Cg which correspond to S and S” in [2,3]. Moreover we
investigate the analytic Feynman integrability of functionals on Cp of
the form

T

(1.3) exp{—/;TH(s,x(s))ds}, exp{/o G(S,m(.s))ds}d)(x(T))

and

(14) e { [ 5,265}, exo{ [ s, (dn()}a(T))

which are of interest in Feynman integration theory and quantum me-
chanics.

2. Definitions and preliminaries

Let (B,B(B),m) and (Cg,B(Cg),mp) be given as in the introduc-
tion. We begin with introducing a concrete form of mp [12]. Let
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§ = (s1,"-",8n) be given with 0 = s < 81 < -+ < 8, < T and let
Ts;: B* — B™ be defined by

Tg(ylv' ) 7yn) z(\/sl - sﬂyh\/sl — Sol1 + v/82 — S1Yy2," "
n
Z Sk — Sk—lyk)
k=1

Then we define a Borel measure vz on B(B") by v E) = (X'm) (T; '
(E)) for every E € B(B"). Let J; (X[ Ex) is called the I-set and then
the collection I of all such I-sets is an algebra. We define a set function
mp on I by mp(J7 (XPEx)) = v X Ex). Then mp is well- defined
and countably additive on I . Using the Caratheodory process, we have
a Borel measure mp on Cg.

Now we introduce some integration formula which plays a key role
throughout this paper. This formula is easily obtain by the change of
variable theorem [4].

LEMMA 2.1. Let §= (81, -+,5,) be given with0 = 59 < 81 <+-- <
sp < T and let f: B® — C be a Borel measurable function. Then

(21) /C F(a(s1), - 2(sn))dmp(z)

[ FoTitu d X m) @, )

where by = we mean that if either side exists then both sides exist and
they are equal.

Next we define the analytic Wiener integral and the analytic Feynman
integral over Cp.

DEFINITION 2.2. Let F be a C—valued measurable functional on Cp
such that

Jp(z):/ F(z_lﬂx)dmg(x)
Cn

exists for all real z > 0. If there exists an analytic function J; on
Q = {2 € C: Rez > 0} such that Ji(z) = Jr(z) for all real z > 0,
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then we define J3 to be the analytic Wiener integral of F over Cg with
parameter z, and for 2 € 2, we write

(2:2) L(F) = Jp(2)-

If the following limit (2.3) exists for non-zero real ¢, then we call it the
analytic Feynman integral of F over Cg with parameter ¢, and we write

(2.3) INF)= lim IZ(F)
Z—s—1q

where z approaches —ig through Q.

Let H be an infinite dimensional separable Hilbert space and let {e,}
be a complete orthonormal (C.O.N.) set in H such that the e,’s are in
B*. For each (h,z) € H x B, let

(h,2)~ = nh_{lgoz < h,ex > (ex, )
k=1
if the limit exists and let (k,z)~ = 0 otherwise. Then (-,-)™ is a Borel
measurable functional on H x B, and if both h and z are in H, then
Parseval’s identity gives (h,z)~ =< h,z >. In particular, r — (h,z)™
1s Gaussian with mean zero and variance |h|2 [8,9].

We now construct some classes &/ and &" of functionals on Cg as
mentioned in the introduction. Let A= {(s1, -, 8,} € [0,T]" : 0 = s <
$1 << sy <T} Let M) = MJ(A, xH™) be the class of complex
Borel measures on A, xH™ and let || p2 ||= vary, the total variation of
e M.

DEFINITION 2.3. Let &I = &!'(A, xH"™) be the space of functionals
of the form

(2.4) F(:z:):/A XHnexp{1Ti(hk,$(8k))~}dlt(~§‘vE)

k=1

for € Cp where u € M]!. Here we take || F' ||"=inf{|| u ||} where the
infimum is taken over all u’s so that F and u are related by (2.4).

Let M" = M"(3 A, xH™) be the class of sequences of measures
{tn} such that each p, € MY and 30 || pn ||I< 0.
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DEFINITION 2.4. Let &" = &"(}_ An xH"™) be the space of func-
tionals on Cpg of the form

(2.5) F(z)=Y_ Fu(2)
n=1

where each F;, € &/, and Zn 1 | Fn ||n< 0o. The norm of F is defined
by || F ||'= znf{z:n_1 Il Fn ||a} where the infimum is taken over all
representation of F' given by (2.5).

Note that if n and k are posmve integers then &; C &) ;. And if
F € &, then || F |[3>] F |5, and |F(z)| <|| F || for all z € Cs.
For completeness, we define &{ to be constant functionals and define
their norms to be their absolute values. For F € &", the series in
(2.5) converges absolutely and uniformly over Cg. Also if F € &" then
[F(z)] <|| F ||” for all z € Cg. Moreover we can show that &" is a
Banach algebra with the norm || - || which corresponds to Theorem 4.1
in [2].

3. The analytic Feynman integral over Cpg

In this section, we begin by proving the existence theorems of the an-
alytic Feynman integral over Cp for the classes &/ and &' of functionals
on Cg.

THEOREM 3.1. Let F € &!! be such that

F(x)=/ e {ii(hk,x(sk))’”}dp(s",ﬁ)
: AnxHT k=1

for x € Cp where u € M]!. Then F is analytic Feynman integrable and
if ¢ is non-zero real

n k
11(F) =/ exp {5 3085 < by >
Anx H?

(3.1) n 200 2 1j5=1
(55 = s0) pdu(5, ).
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Proof. From the Fubini theorem and Lemma 2.1, it follows that

Tr(2) =/‘ F(z""2)dmp ()

-/A an/neXp zz I/QZZ\/__—] 1Ak, y;5) }

=1 j=1
d(XTm)(y1,- - -, yn)du(5, k)

1 « n 2 s
:/Anxm exp{ -5 2ok - ) ]:Zk hy| Jau(s,k)
n k
=/A,,an exp{ B ?‘2—1;: 22(2— 0 k) < hj, by >

k=1 j=1

(35 = s0) fdu(3, )

for z > 0. The integrand of the last member of the above equation is
an analytic function of z in Q and is bounded by ore. Using Cauchy’s
theorem, Fubini’s theorem, and Morera’s theorem, Jg(z) has an analytic
extension to §2. Thus we have for z €

1 n n 2
I;(F).—_/ exps — — sk—sk_l)‘ h;
3 2 2.0

An application of the dominated convergence theoren: enables us to pass
the limit as z — —iq and hence we obtain the formula (3.1).

—

Yau(s, 1)

THEOREM 3.2. Let F € &" be given by

n

F(z) = ZF (z) = Z/"XH” exp {1 (b, 2(sx))™ }d,ln(;,f?)

k=1
where each F,, € &), and p, € M) with 5°°7 || F, ||!< co. Then F is

analytic Feynman integrable over Cg and if q is non-—zero real

oo n k
(32) IYF)= Z:IIE{(F,,)— Z/ exp 2q?;zz

(2=6k) < hj, b > (55 — 30)}dﬂn(§a h).
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Proof. We note that if F,, € &, then |Fy(z)! <|| F, || for z € Cp.
By the dominated convergence theorem, we obtain

(3.3) / F(z"%z)dmp(a) = Z/ Fo(z"Y%2)dmp(z)

—Z/ Hexp __Zzg—b]k)<h]7hk>
b XHN

k=1 y=1
(55— s0) }dpn(5,F)

for z € Q. Since 377, || Fn ||l < oo, the series (3.3) converges uniformly
and so is analytic in 2. Thus, using the same argument as in the proof
of Theorem 3.1, we have the formula (3.2).

Next we prove the existence of the analytic Fevnman integral for func-
tions of the form (1.3). Let G be the set of all ("~valued functions 8 on
[0,T] x B which have the form

(34) 9(s,y):/};exp{i(h,y)N}dag(h)

where {0, : s € [0,T]} is the family from M(H) satisfying the following
conditions ; (i) for each Borel set E of H, o4(E) is a Borel measurable
function of s on [0,T}], and (ii) || o, ||€ L1[0,T).

THEOREM 3 3. Let 8 € G be given by (3.4). Then the functions
F.(z) = [fo (s,2(s))ds]™, and F(z) = exp{jOTG(s,a:(s))ds} are ele-
ments of & for x € Cg. Hence they are analytic Feynman integrable
and if q iIs non-zero real

I{(F) = Z —Iq(Fn) =1+ Z/

(2= 6;4) < hj, hi > (55 — 30)}dun(§, i)

n k
RAEPI

(3.5) x H™

where dpn (3, k) = Xldog, (hi)dsk.

Proof. By the definition of &, fo Y)ds € &Y < &". Since
&" is a Banach algebra, Fi.(z) and F(z) are elements of &". From
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the Fubini theorem, Lemma 2.1 and unsymmetric Fubini theorem [5], it
follows that for z € Q2

/CBFn(z—l/Zx)de(x)= /9(sk, sk))dsk]de(I)

Cka

= n!/ / exp{iz~l/2zz \/Sj *Sj~1(hkayj)~}
LAnxH™J B,

k=1 j=1
d(X]nm)(yla e 'ayn)X{ldask(hk)dSk

1 n n 2 .
= n!./A,,xH" exp{ - é—;;(sk — Sk—1) ;hj’ }dun(s,h)

where dpun(3,h) = XI'do,, (hi)dsg. Moreover for z € Q we have

o0 oo

Y P22 < Zni[ / lowllds]” < oo

n=0 "~ n=0

Using the dominated convergence theorem and the same argument as in
the proof of Theorem 3.1, we obtain the formula (3.5).

Let F(B) be the class of functions on B of the form

(3.6) Bly) = /H exp{i(h,y)™)dv(h)

for y € B where v € M(H).

THEOREM 3.4. Let 8 € G and 2/) 6 f(B) be given by (3.4) and (3.6)
respectively. Then the functions F,( [fo (s, z(s))ds]"(z(T)), and
F(z) = exp{fo 0(s, z( s))ds}w(:c(T) are elements of &" for x € Cp.
Hence they are analytic Feynman integrable and if ¢ is non-zero real

n

I{F) = Z—Iq(F Z/ e P 5}“[2
(

(3.7)

n+1

] ) T = ool a3
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where du,(35,h) = (X{'dos, (hi)dsk)dv(hntr).

Proof. We have already known that UOT 0(s,z(s))ds]® and exp{fOT
6(s,z(s))ds} € &'". Moreover we know that ¥(z(T)) = fftﬁ(a:(s))
dur(s) = [ [y exp{i(h,z(s))~ }du(h)dvr(s) € & C &" where vt is
the unit measure concentrated at s = 7. Since &" is a Banach algebra,

each F, and F are elements of &' and hence they are analytic Feynman
integrable. Now we consider the following function

n T
Fa@) =[I] [ 8o ateois]vl=(1))
=n! [T 6(sk,z(s)XTdsxvo(2(T))

n-+1
:n!/ exp {i 3" (e, 2(5))™ (X dosy (he)dsi)dv (o)
A x HPH1 —

where sp,4+1 = T. From Fubini theorem, Lemma 2.1 and unsymmetric
Fubini theorem, it follows that for z € 2

Fo(z7Y%2)dmp(z)

Cp
n+1 k
=n!/ / exp {iz_l/zzZ\/S,’-—Sj—1(hk,yj)~}
ApxXHn+1JBn+tl k=1 j=1

d(Xln-’-]m)(ylv B yn+l)dlun(§, E)
n+1

n+1
1 ~, |2 =
:n!/ ex {— —_ Sk — Sk—1 h-’ }dun s h
s P 22;( ) 21 | pdun(3R)
1 n n+1 2
:n!/ exp{——{ Sk — Sk~ ‘\_‘h-l+
A > ;( 1) 20

(T = sw)lhnsa ] Jdpn(S F)
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where dun(5, k) = (X{*dos, (hi)dsk)dv(hnt1). Moreover, for z € Q,

xD o0

> ) < Z . [/Tlos I ds]" < oo.

n=0 n=0

Using the dominated convergence theorem and the same argument as in
the proof of Theorem 3.1, we obtain the formula (3.6).

The rest of this paper, we establish the existence of the analytic Feyn-
man integral for functions of the form (1.4). Let n be a C-valued Borel
measure on (0,T). Then n = p + v can be decomposed uniquely into its
continuous part ¢ and discrete part v. Let ér, denote the Dirac measure
with total mass one concentrated at 7,.

Let G* be the set of all C~valued functions 6 on [0, T] x B which have
the form (3.4) where {o, : s € [0, T]} is the family from M(H) satisfying
the following conditions; (i) for each Borel set E of H, o0,(E) is a Borel
measurable function of s on [0, 7], and (ii) || ¢, || € Ll([O,T],B([O,T]),
|n1)-

-

THEOREM 3.5. Let n = u + > wpby, where 0 <7y < -+ < 7, < T
p=1

and the wy,’s are in C forp = 1,2,- ,r. Let 6 € G* be given by

(3.4). Then the functions F,(z) = [fo $))dn(s)]" and F(z) =

exp{f0 (s,z(s8))dn(s)} are ana]vmc Feynman 1nteg1 able and if ¢ is non-
zero real

§Ey N 1 wy' - wd
INF) = Y. —I(F, -y ¥ T ol
(38) 4 n=0 n=0 go+qgi+ -+q¢g,=n
T Jp+1 Jrt r
Wl(zhu it S by +Zk,,z) Ze,,,ZZA,”, 0)
p=u =1 p=u =1
where W1(A,B,C, D) = ) fAGO'fl v Jpreotar+ - +ar

i+t irp1=q0

T Ju Jr+1
eXp{Zqz [E Z ay o A2+ ZO‘T‘H o|B|* + Z‘MJHHICI +D}}
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A X0 X124 00, by )Xoy X2, 00, Y (g, A Xy o XT24 1)(5p5)
Uy p = Sy—1,v — Su—-1,v-1 and Aqo;]1,~-~,],+1— {(50,13 * 5y 80,5,151,1
81,2+ ",Sr,j,_*_l) 10=800<s$01 < - <805, <71 <S811<812<"""
<Spo1j, <K Tr < Sp1 < - <Spj <T =741}

Proof. From the multinomial expansion theorem, the simplex trick
[12], the Fubini theorem, the relabeling (s;,+..+j,+i = 3p,i and 7, =
$p,0 = Sp-1,j,+1), and Lemma 2.1, it follows that

/ Fo(z7Y22)dmpg(z)
Cn
T T n
:/ [/ 8(s,z = 22(s))du(s) + ZB(TP,Z_I/Z;E(TP))] dmpg(z)
Cpg 0 p=1
n! T
= —_— I ptr 8(s, ==/ 2a(s
90+‘11+‘Z+(I1~"‘n go'qr!- - gr! ! " /CB ([ ( ()

dp(s)) H 8(rp, 2~ 22(15)) I dmp(2)

p=1

S = ) ([,1I

1 ! )
gotai+-+gr=n T qr 1t tirpr=g0 Y Ae0ut, it

8(si, 272 22(5:)) [] 07, 21 22(ry)) 2 dm p(2) }A(X{00)(s1)

p=1
q1 ., .47 r
D Y~ DR | [ {1
’ 1. gt , :
gt +tar=n TV ar Jitetirgr=g0” a0t drp1 YCB T p=0

Jp+1

[T 6spio 272 22(sp,0) H{ T 05,0, 2™/ 22(e,0)% fdmp ()
i=1 p=1
d(X 5o X{Z1' 1) (sp,0)

=n! Z “ . .wr Z / _/qu_,r,

1. ]
gotqi+-+gr=n IV a4 irpr=q0” Baoiir, i

r ipti P Ju 1
(T IT 6(smi =2 (30 30 vawmwumtw +Z\/a—pmy,,,u))}
p=0 i=1 u=1v=1 v=1

utl

{ Hﬂ(spvo,z_l/?‘(i myu—l,y)>qp}d(xi}o+rm)

p=1 u=1 v=1

.
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(40,0, ¥0,5 1 Y051 4+1 Ur—1,1,°*  Yre1,jrr Yr—1,j0 415
J 1
Yr,1, '1yT,jr+1)d( X P+ ”)(Sp,l)
91 . gr

w w
o W e
n Z algr! Z
go+q1+-+gr=n J1+'“+Jr+l=40
r Jp+1

/Hoo+q1+~-+qrex { [iza”” Zh“ 1’+Z(Zhvt+

u=lv=1
qp jr
Sk + 5™ arin z hos|’ zau,,u+I|szP,| 1}
=1 v=1 1= pEui=1

d(X,f:onyflUa,,s)(hp,i)d(x qu’IUTp)(kP d(X 7., XJP+1/-‘)(5;D i)

Bt drgt

for z € Q. Moreover for z €  we have

e 1 _ 0o 1 T , .
2 il g;[/o Lol dinl's)]" < .

Using the dominated convergence theorem and the same argument as in
the proof of Theorem 3.1, we obtain the formula (3.9).

COROLLARY 3.6. Letn = 3 wyb,, where0 <74 <73 < <7, < T
r=1
and the wy’s are in C for p = 1,2,---,r. Let § € G* be given by (3.4).
Then the functions F, and F in Theorem 3.5 are analytic Feynman
integrable and if q is non-zero real

00 w?* <o wir
6o =Y LnE)=y Y% PR
n=0 n=0q 4+ +g-=n ’ "
r q
Wz(Zi}prk,())
u=1 k=1

1 r
h A,B) = 21 =
where W3( A, B) fH" exp{2qi uZ::I(T
X2 00 ) hpok)

- B}d(X;:1
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COROLLARY 3.7. Let n = y and let 8 € G* be given by (3.4). Then
the functions F;, and F in Theorem 3.5 are analytic Feynman integrable
and if ¢ is non—zero real

n

(3.10) 19(F) = ini i (Zh,,o)

5 3 (sk — seo)|AF? + B

where W3(A,B) = fAan" exp { 2qi
=]

A XT 0 )(hi)d(XT )(sk)-
THEOREM 3.8. Let n be as in Theorem 3.5. Let 8 € G* and ¢ € F(B)
be given by (3.4) and (3.6) respectively. Then the functions Fy(z) = [fOT

0(s, z(s))dn(s)]"$(2(T)) and F(z) = exp{}, 8(s,x(s))dn(s)}(z(T))

are analytic Feynman integrable and if q is non -zero real

x

= wi ol
II(F) = ——I" 1 wr/
a( TlZO 112:()00+91+X:+qr=n QI!"‘QT! H
T Jp+1
(Zhu 1,+Z(th, +kal)
(3.11) o vl

+ Ao+t Z Pori+ R+,
r 9p -
Z Z kP»i + hT‘Jr+1 +15 (T = Sre4 )Ihr,.ir-{-l +1 |2) dV(IIT,jr+1+1 )
p=u =1
where W1(A, B,C, D) is as in Theorem 3.5 .

COROLLARY 3.9. Let 5 be as in Corollary 3.6. Let § € G* and ¢ €
F(B) be given by (3.4) and (3.6) respectively. Then the functions F,, and
F' in Theorem 3.8 are analytic Feynman integrable and if ¢ is non—zero

real

g1

.1 e cewr
R =3 SRy =3 3 e

0 n=0go+q1+- +gr=n

(Z Z hpi + B (T — rr)lh*‘|2>dv(h*)

(3.12)
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where W5( A, B) is as in Corollary 3.6.

COROLLARY 3.10. Let n be as in Corollary 3.7 Let 6§ € G* and
¥ € F(B) be given by (3.4) and (3.6) respectively. Then the functions
F, and F in Theorem 3.8 are analytic Feynman inregrable and if q is
non-zero real

o n+1
) = )"Z TP ;/W3(szhj,'7—3n)|hnﬂlz>

dv(hni1)
where W3( A, B) is as in Corollary 3.7.
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