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Optimal Rates of Convergence
in Tensor Sobolev Space Regressionf

Ja-Yong Koo!

ABSTRACT

Consider an unknown regression function f of the response Y on a d-
dimensional measurement variable X. It is assumed that f belongs to a
tensor Sobolev space. Let T denote a differential operator. Let T, denote an
estimator of T(f) based on a random sample of size n from the distribution
of (X,Y), and let || T — T(f) ||2 be the usual Lz norm of the restriction of
T, — T(f) to a subset of Re. Under appropriate regularity conditions, the
optimal rate of convergence for || Tn — T(f) ||z is discussed.

KEYWORDS: Regression, differential operator, optimal rate of convergence,
tensor-product B-splines.

1. INTRODUCTION.

Consider a regression function f of the response Y on the measurement variable
X so that E(Y|X) = f(X). It is assumed that f belongs to F which is a class of
functions. Let T be a differential operator. A statistical problem is to estimate T'( f)
based on a random sample (X,Y}), -+, (X,,Y,) of size n from the distribution of
(X,Y). This is said to be parametricif F is a collection of functions which are defined
in terms of a finite number of unknown parameters. Otherwise the problem is said
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to be nonparametric, which makes the estimation problem somewhat more difficult.
The quality of estimation is measured by the loss || T, — T(f) ||2, where || - |2 is
the usual L, norm of functions on a subset of RY. Under this setup, Ibragimov
and Has'minskii (1980) and Stone (1982) have constructed optimal estimators f,
of fin L, norm, when F consists of p-smooth functions on [0,1]¢. Ibragimov
and Has’minskii (1980) proved that their estimators are almost minimax modulo
a constant, that is, there are constant Cr and Cp such that ?'UI})' Efl| fa=f 2 <
€

Cun~" and infsup E; || fo — f |2 > CLrn™, v > 0. Stone (1982) has considered
fn fEF

the definition of optimality using bounds in probability for the loss || T, — Tf) |2
when T is a differential operator. Koo (1990) has shown that the estimator based
on the tensor-product B-splines achieves the optimal rate of convergence in Stone
(1982) when F consists of p-smooth functions on [0, 1.

The main interest of this paper is to study asymptotic properties of estimators of
T(f) as n — oo when F is a tensor Sobolev space, since the tensor-product splines
approximates well the functions in a tensor Sobolev space. In particular, we will
show that there is a lower bound on the rates of convergence for the function T(f).
Le Cam (1986, for example) discussed the general idea that the difficulty to estimate
f versus F, C F — {f} when F, consists of functions close to f is reflected in the
lower bound of the minimax risk. This approach, using Fano’s lemma, has been
used to obtain lower bounds for minimax risks by Ibragimov and Has’minskii (1980)
in classical regression estimation with equidistant design and by Yatracos (1988) in
the regression type problems and by Birgé (1983) in density estimation. To handle
our problem, we will use Le Cam’s idea with Fano’s lemma. A modification of the
result of Birgé helps to obtain the best lower bound. We use the properties of F
and the operator T to construct a subset F,, of F such that the number of elements

in F, is large and the norm of T'(f;) — T(f2) for fi # f» in F, is large.

To find an estimator achieving the lower bound on the rates of convergence,
we will consider estimators based on the tensor spline regression estimators. The
function T'(f) will be estimated by T(fn), where f, is the tensor spline regression
estimator of f based on the tensor-product B-splines with a finite number of knots.
To achieve the lower bound on the rates of convergence, the number of knots should
be increased in an appropriate rate.

Here are some reasons for using univariate splines and tensor-product splines in
nonparametric function estimation. A spline of order ¢ is a piecewise (¢ — 1)-th
degree polynomial, subject to some smoothness constraint at the knots (boundaries
between consecutive pieces). Commonly employed are cubic splines (¢ = 4). The
spline is an attractive tool for nonparametric function estimation, since it can bridge
the gap between parametric and nonparametric methods. There is a parametric
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flavor since splines may be written as a linear combination of basis functions. Thus
statistical methods such as least squares, maximum likelihood can be easily used
in practical implementation. However, there 1s an extremely rich class of functions
that may be splines. This property makes splines flexible, where flexibility means
the ability to provide accurate fits in a wide variety situations; see Stone (1985).

One of important properties of univariate splines is that in most senses smooth
splines approximates just as well as piecewise polynomials. This is no longer the
case for multivariate splines, since the degree of approximation achievable by piece-
wise polynomial of given total order on certain regular grids in the plane is adversely
affected by smoothness requirements; any smoothness condition reduces the achiev-
able order of approximation. This is compared with the tensor-product splines case
where the full order of approximation is achievable regardless of smoothness; see de
Boor and DeVore (1983).

In Section 2, the lower rate of convergence is discussed and an asymptotically op-
timal estimator of T'(f) based on the tensor spline regression estimators is presented.
Some remarks on the difference between the tensor Sobolev space and the space of
p-smooth functions are also given. In Section 3, the proofs of main Theorems are
given.

2. OPTIMAL RATES OF CONVERGENCE.

Let F denote a collection of functions on a subset of R? and let T(f), f € F,
be a function defined on R?. Consider an unknown distribution P; which depends
on f € F. Let T., n > 1, denote estimators of T(f), T, being based on a random
sample of size n from the unknown distribution P;. Let {b,} be a sequence of posi-
tive constants. It is called a lower rate of convergence for the function T'(f) if

hrnl]mmfmf sup Py (|| T, — T(f) 2> cbn) =1
—0 T J€F

here inf denotes the infimum over all possible estimators. The sequence is said to be
T -

an achievable rate of convergence for T(f) if there is a sequence {T,} of estimators

such that -

lim lim sup sup P; (H To = T(f) ||2> cb ) = 0. (2.1)
C=— D fe

It is called an optimal rate of convergence for T(f) if it is both a lower and an
achievable rate of convergence. If {b,} is the optimal rate of convergence and {T.}
satisfies (2.1), the estimators T., n > 1, are said to be asymptotically optimal.
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Consider a distribution of (X,Y), where X is a R? valued measurement and
Y is the corresponding response such that E(Y|X) = f(X) with f in an infinite
dimensional space F. Conditionally on X = z,2 € D = [0, 1], the response Y has a
distribution of the form h(y|z, f(x))dy. Let Py, denote the dependence of various
probabilities of Y given X = z on f(x). This regression model was particularly
considered by Stone (1982) and Yatracos (1988). An example of the conditional
distribution is the Normal distribution which is given by

h(yle, f(2)) = (2r0%(2)} P exp{— (v — f(2)) 20%(2)}.  (22)
For other examples of conditional distributions, see page 1350 of Stone (1980).
Tensor Sobolev space. Let C; be a positive constant and p = (p1,- - ,pa) be a

d-tuple of positive integers. A tensor Sobolev space F is the collection of functions

f such that

d \low f
= - <Ci
17 =0+ 2| T <
Let m = (m,,---,mg) denote a d-tuple of nonnegative integers and set |m| =

my+---+my. Let T(f) = D™f, where D™ denotes the differential operator defined
by

aml f
D'f=——"u.
! oz --- Oz}
For example, if T(f) = f, then T is a differential operator of order m = (0,---0)
and T(f) = 8°f/dx, - - - Dz4 implies that the order of T is m = (1,---,1).
The following Conditions (i)-(iii) is assumed throughout this paper.

( 1) Thereis a positive constant C, such that K (Pf,(z), Ph(r)) < Cylfilz) — fz(m')|2
fOl‘ f17 f2 in }—

( 11) The marginal distribution of X Is absolutely continuous and its density is
bounded away from zero and infinity on D.

(i11) The conditional variance of Y given X = x is bounded on D.

Condition 1 in Stone (1982) is a sufficient condition for the Condition (i) bound-
ing the Kullback-Leibler information; see Yatracos (1988). It is the behavior of the
Kullback-Leibler information K (Pf,(z)a Ph(z)) and the order of T' that will deter-
mine the lower rate of convergence. It can be shown that Condition (i) holds for the
Normal distribution in (2.2) if o(-) is bounded away from zero.
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Set

d
1 - Zmi/Pi
y=—
2+Zp,-"1
i=1

Theorem 1. Suppose that Conditions (i)-(ii) hold and T is a differential opera-
tor of order m and the unknown regression function f belongs to the tensor Sobolev
space F. Then {n="} is a lower rate of convergence for T(f) in L, norm.

Proof. See the Section 3.

Now we construct estimators of 7T'(f) based on tensor-product B-splines. To
explain the tensor-product splines, let us begin by looking at the univariate case.
Let K be the number of knots which possibly depends on the sample-size n. Let S
denote the set of splines of order ¢ which are ¢ — 2 times continuously differentiable
on [0, 1] and reduce to polynomials of degree ¢ — 1 on each subintervals determined
by knots. Since ¢ degrees of freedom are lost at each knot, S is a vector space of
dimensionality N = K +¢. Let A;, 1 <7< N, denote the B-splines; de Boor (1978).

The one-dimensional splines carry over to the multivariate case by the method
of tensor-product. Given K; knots for each covariate x;, let A, ; with1 <3< N, =
K; + ¢; be B-spline basis of S; with coordinate order ¢;. The element of the tensor-
product spline space 7 with coordinate order ¢ = (q1, -, ¢a) can be represented as

N Ng
Z - 'Zﬂil---idAl,il(fvl) - Agig(Ta)-
1y ]
The tensor-product B-spline basis for 7 is given by Bi(z) = Ay (21) - Adiu(Ta)
for £ € D and hence the dimension of T is given by J = Ny -+ Ng.

Provided the number and locations of knots are determined, we estimate the
regression function f by the tensor spline regression estimator fn which 1s the min-

imizer of the sum of squares Z(Y,- — s(X;))? over s in 7. Program developed by
de Boor (1978) can be used \:litlh slight modification to iAmplement this procedure,
since the usual regression programs can be used to find f,.

We state the result on the achievability of estimators based on the tensor spline
regression estimator. @, ~ b, means that a,/b, is bounded away from zero and
infinity.
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Theorem 2. Suppose that Conditions (ii)-(iii) hold. For each coordinate let the
lengths of subintervals between the knots be asymptotically of the same order. If the
regression function f belongs to F, the coordinate order ¢; > p; and N}* ~ N}* for
allj=1,---,d with Ny ~ nl/”l(“z”v_l), then {T(fn)} is asymptotically optimal.

Proof. See the Section 3.

Remark 1. When d = 1, the above tensor Sobolev space is the usual space of
p-smooth functions on [0,1]. For simplicity, assume that d = 2 and p; > p2. A
p2-smooth function in the usual sense can have derivatives D™ f, |m| < po, but can
not have derivative such as D®9 f which exists for a function in tensor Sobolev
space.

Remark 2. Since the domain [0, 1]¢ is star-shaped, F is a subspace of p-smooth
functions with p, = min(p;); see Schumaker (1981). In case of pg-smooth functions

the usual optimal rate of convergence for f is given by n~=Po/(@e+d) " Koo (1990)
has shown that the estimator of f based on the tensor-product B-splines achieves
this optimal rate of convergence under the condition that f belongs to a class of po-
smooth functions. If we just assume that f belongs to a class of pg = miin(p,-)—smooth

functions, whereas f € F the convergence rate n~"/(?P0+4) hased on previous result

d
is slower than n™ with v = 2+Z p,-'l, where the rates are same if p; = pg, 1 <1 < d.

i=1

3. PROOF

Definition. For any two probability measure P, @, their Kullback-Leibler in-
formation K(P,Q) = Eplog(dP/dQ) if P is absolutely continuous with respect to
Q; otherwise, K(P,Q) = +oo.

In the case of regression model in Section 2

I{(Pfl(.r)vph(r)) = /h(ylla fl(l))lOg {h(yh’v fl(l))/h(yla’a f2(x))} dy

In the case of product measures K (Pj, (z,) X -+ X Ppen)s Prager) X ©** X Pryzny) is
given by Z I\'(Pfl(r‘.),Ph(xl.)) for f],fg c F.

=1
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Fano’s Lemma [Birgé (1983) or Ibragimov and Has’minskii (1981)]. Let Py, - - -
Py be probability measures and 6 an estimator of the measure. Then,

Y

M=% K(P, P;) + log?

M —
M P(6#P)>1-— 2
; (6 # F) =2 log(M — 1)

Note that M~ Z KN(P, P;) < sup K(P, P;).

4

Definition. Let p be a distance on a space G of functions on a domain A" and
® a function, ® : R* — R*. The function ® o p is called superadditive if for every
finite partition {A; : 1 <7 < {} of X', we have for f,gin G

]
O(p(f,9)) = D_@lp(fla,gla)]-
=1
This property has been particularly used by Birgé(1983) in density estimation and
Yatracos(1988) in regression problem. It is satisfied by || f — g ||3 on L.

Birgé’s Theorem [Birgé (1983), Proposition 3.8]. Let {4, : 1 < ¢ <[} bea
partition of X, and f, g; and ¢! be elements of L; space with support on A;. Let
!

Fo=A{f +Z Ai: A; = g; or ¢!} and assume that for all ¢, p(f + ¢i, f + g;) > @ and
=1
that p” is superadditive for some 7 > 1. Then there is a subset F; of F, such that

n

p(f*,g%) > a(l/8)" for f* # g~ elements of F; and log(cardF; — 1) > 0.316! for
any | > 8.

Lemma 3.1. Suppose that the regression model holds. Let F, be a subset of F
which is 26-distinguishable in Lo; namely, || T(f;) — T(f;) ll2> 26 if fi # f; in Fa.
Then for any estimator T, of T'(f),

R n sup}_ K (Pf,(.\’), sz(_x)) + log2
sup Py (Il T = T(1) 12> 8) 2 1 = E | 22

log(cardF,, — 1)

Proof. For every estimator Tn, define a discrimination rule )\ taking values in

F, such that || T, = T(A\,) |l2= m1n | Tw = T(f) ||2- Then

sup Py (H T, — T(f) |l2> 8| X1, -- Xn)

1 cardFp N
> P T, = T(f: IP. CORRRI, ¢4
> a7 = Pl (f) Il2> 81Xy )
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1 cardF,,

> Py, (An # frl X0, Xa)
_cardfn; f,( # 1% )
This is because A, # f, implies that || T, — T(f,) Il2> 6 and F, is 26-distinguishable.
By applying Fano’s Lemma to the product measures Py(;,)X - X Py(;.), f € Fy, the
average error rate in the discrimination problem can be bounded below as follows :

1 cardF,, R
cardF, ; Py, </\" # [l X, "’X")

n

sup K (Pfl(/\ )’sz(A )) + IOg‘)
>1— i=1J1./2€Fn

- log(cardF, — 1)

Taking expectation with respect to X; completes the proof.

Proof of Theorem 1. For simplicity, we suppress the dependence of vari-
ous quantities on the sample size n if they are clear from the context. Let N =
(Ny, -+, Ny) be a d-tuple of integers depending on n such that

NP
C3 < N—lm < Cy

for positive constants C3 and Cy. Let V denote a set of d-tuple of integers such that
1 <v; < N;forv=1(vy,---,vy) in V. Write D as the disjoint union of J = N; --- N,
cubes D,, v € V, having center z, and length N~! in the i-th direction.

1
Choose an infinitely differentiable function ¥ € F which vanishes outside (—%, %)d

and 1s such that || T(¥) ||o> 0. Define ¢, for v € V by
@y = (CaNT' ) 0 (Ni(@1 = 24 ), -+, Na@a — 24,))

[t can be seen that , is zero outside of D,. Given {0,1}-valued sequence 7 =
{ru}vev, set fr = Z Ty@y. Observe that

(GO}

_ o v 2
- ZTU (Clelpl) QZAC?pt/(axp.‘ (Nl(‘,]“‘l *l‘vl)v"'a‘Nd(l‘d_:Evd)))
Vv [

bo L\
(),LP:

Thus || f; [|,<|| ¥ ||, from which it follows that f. belongs to the parameter space

<cardVZ (Nl-'-Nd)_1
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F. Let F, denote the collection of all functions f, as 7 ranges over the 27 possible
sequences. Then F, is a subset of F.

Suppose that N; — oo as n — 0o. Then

I T(po) l2= C NP N - NG [/ {D™(Ny(21 = 20,), - Na(za = 24,))}" do
= CyINTP - NI NP4 (N -+ No) ™2 || D™,
> CsNy AP J=1/2,

d
where CS < C;‘ICSZ:.:z mr/Px,

Am1_3 T
z:]pl

and J = N;--- Ny Since the Ly, norm of T'(fy) — T(f,) for f; # f, in F,, is greater

than or equal to || D™¢, || for some v € V and ¢, vanishes outside D,
I T(fi) = T(f2) 2> CsN7 AP J=V2 for fi # fo € Fo. (3.1)

By superadditivity of || - ||, we have the following Lemma. See also the proof of
Proposition 3.8 of Birgé (1983).

Lemma 3.2. If J > 8§, then there is a subset F* of F,, such that
I T(f{) = T(f3) ll2> Cs/VBNT*"' for f; # f3 in F;
and log (cardF; — 1) > 0.27.J.
Proof. See the Appendix.

It can be seen that |fi(z) — fo(x)] < 2/(CaNT') |¥(z)| for each z in D,. Since

@, is zero outside the cube D,, for a positive constant Cs
sup [fi(z) — fo(x)| < 2/(CaNT')sup sup |¥(z)| < CeN; ™.
z€D V z€D,y

It follows from this and Condition (i) that K(Py,(z), Prz)) < C2 |fi(z) — fa(2)]?
< CiNT for fy, f2 in F,, and C7 = C2CZ. By Condition (iii),
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ER(Ppxy, Prx)) < N7 for fi, f2 € Fr. (3:2)

Let § = Y(Cs/VB)N{*" > CoN; ", By Lemmas 3.1 and 3.2, and the equation
(3.2), for every estimator T of T(f)

' -
inf sup Py (|| T~ T(f) [l2> CoNy ™)
T feFy ~
> inf sup Py (|| T~ T(f) lo> 6)
T fer;

>1— {CgnN; ™ +10g2}/(0.27J)

an_zp‘
21-Cho N, - fo/p2+---+p:/pd
=1— Cyon/NP7, (3.3)
where
d 1
B=2+)Y <.

i=1 Pi

To show that n™7 is a lower rate convergence, let € be a given positive constant. Let
n and N, be such that

n > n(e), and Ny = (Cyon/e)V/B 4 for0<a< 1.
Suppose that N; > 2 for n > n(e). Choose co = co(€) such that

co < 2747 Cy(e/Cro)".
Since N1/(Ny —a) <2 for Ny > 2, n = (¢/Cyo)(N; — a)B” and Bp,y = Ap,

con™7 < 27471 Co(e/Cro) {(€/Cro) (N — @)P7 } 77 < CoNy A7,
Observe that € = Cygn/(N; — a)BP > Cyon/NBP . By (3.3),
inf sup P, (1T =T(f) = en™)

> inf sup Py (|| T — T(f) |l2> con_"')
T fery;,
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> inf sup Py (| T = T(f) [l2> CoN; ™)
T feFy
> 1 — Cion/N{™
>1—e
That 1s,
lim lim inf inf sup Py (H T —T(f) ||2> cn"’) =1,
c—0 n T feF
which completes the proof of Theorem 1.
Proof of Theorem 2. Let the tensor-product spline f;; be defined by the mini-
mizer of E{Y — s(X)}? over s € 7. At first we need a bound on f; — f which plays

a role of a bias term. By Theorem 1 of Koo (1990), there is a positive constant Ci;
such that

” fr: - f “oos ClldiSt(fv f)’ (34)

where || - ||oo is the usual Lo, norm of functions on [0, 1)¢ and dist(f,T) = 127f_ I f-

5 |lso- By Theorem 12.8 of Schumaker (1981), dist(f,F) = ) (Nl_p‘ +- 4 Nd_p")
and thus

| fz = f llow= O (NTP 4o 4+ N7™4).
It is seen that fn - fx plays a role of variance term. By Theorem 2 of Koo (1990)
I fu = f7 U= Op {(J/n)"/2}. (3.5)
By (3.4) and (3.5), if NP ~ NJ" for all j = 1,---,d with N ~ nt/m@+3p7") then
I fo = £ lla= Op (n7V/C+Z)). (3.6)

By an application of the argument used to prove Lemma 4 of Koo (1990) and the
property of tensor-product splines, there are positive constants Cyz and Cy3 such that

I T(f) = T(s) |12 CraNE™ - N4 SN 4 CiaNP™ - NG || f = s |13

for f € F and s € T. By this inequality and (3.6)
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I T(fa) = T(f) ll= Op (n™7),

which implies that {T(fn)} 1s asymptotically optimal.

APPENDIX

Proof of Lemma 3.2. Consider the set T = {0,1}7 on which a metric 7 is

defined by n(o, 1) = Z(ov —7,)% for 0,7 € I. There is an one-to-one map 7 from
veV

7 onto F,, such that n(r) = Z Tfu for 7 € Z. By (3.1),

v

I T (7(0)) = T (x(7)) [2> Cs Ny J=V2 {3(g, 1)} /2

for 0 # 7in T and n > ny. Choose the maximal subset 7= of T such that
Mo, 7) > J/8 for ¢ # 7 in I*. We define Fr = w(Z*) and choose § such that
Af4 <& < Af2for A= Cs N7 J=1/2 .(J/8)"/2. Then it suffices to verify that
log {cardZ* — 1} > 0.27J when J > 8. We assume J/8 is an integer for convenience
in notation. By the maximality of Z*, for any point o in 7 —I*, there exists a point
o in I* such that n(og, 0) < J/8; otherwise we can add oo mto Z*, which contradicts
the maximality of Z*. This implies that for any point gg in Z, there exists ¢ such
that oo € B(0,J/8), where B(o,r) = {r € T : n(o,7) <r}. Hence

Zc | B(a,J/8),
o€el*
from which we have
cardZ* - cardB(o, J/8) > 27 = cardZ. (A.1)
We need to compute card B(o, J/8). Observe that
cardB(o,r) = an.rd{r in(o,7) =1}
1=0

and that

n(o,7) =14 if and only if card{v € V : 0, # Ty} =i.
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Since (‘l]) is the total number of possible ways of choosing ¢ v’s from V such that
card{v € V : o, # 7,} = 1, we can see that

cardB(o,J/8) = 3 ({ )

1=0

Therefore (A.1) implies that

J/8
cardI” - Z( ) > 27,

1=0

By the exponential bound of Binomial random variables, we obtain

J/8
JZ ( ) P (Binomial(J, 1/2) < J/8)

o 2R )

= exp(—0.281J);
see theorem 2 of Hoeffding (1963). Therefore, for J > 8,

log {cardZ* — 1} > log {exp(0.281J) — 1} > 0.27J.
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