• Title/Summary/Keyword: Trench process

Search Result 193, Processing Time 0.024 seconds

Analysis of Lattice Temperature in Super Junction Trench Gate Power MOSFET as Changing Degree of Trench Etching

  • Lee, Byeong-Il;Geum, Jong Min;Jung, Eun Sik;Kang, Ey Goo;Kim, Yong-Tae;Sung, Man Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.3
    • /
    • pp.263-267
    • /
    • 2014
  • Super junction trench gate power MOSFETs have been receiving attention in terms of the trade-off between breakdown voltage and on-resistance. The vertical structure of super junction trench gate power MOSFETs allows the on-resistance to be reduced compared with conventional Trench Gate Power MOSFETs. The heat release of devices is also decreased with the reduction of on-resistance. In this paper, Lattice Temperature of two devices, Trench Gate Power MOSFET and Super junction trench gate power MOSFET, are compared in several temperature circumstance with the same Breakdown Voltage and Cell-pitch. The devices were designed by 100V Breakdown voltage and measured from 250K Lattice Temperature. We have tried to investigate how much temperature rise in the same condition. According as temperature gap between top of devices and bottom of devices, Super junction trench gate power MOSFET has a tendency to generate lower heat release than Trench Gate Power MOSFET. This means that Super junction trench gate power MOSFET is superior for wide-temperature range operation. When trench etching process is applied for making P-pillar region, trench angle factor is also important component. Depending on trench angle, characteristics of Super junction device are changed. In this paper, we focus temperature characteristic as changing trench angle factor. Consequently, Trench angle factor don't have a great effect on temperature change.

Analysis of The Electrical Characteristics of Power IGBT According to Design and Process Parameter (설계 및 공정 변수에 따른 600 V급 IGBT의 전기적 특성 분석)

  • Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.5
    • /
    • pp.263-267
    • /
    • 2016
  • In this paper, we analyzed the electrical characteristics of NPT planar and trench gate IGBT after designing these devices according to design and process parameter. To begin with, we have designed NPT planar gate IGBT and carried out simulation with T-CAD. Therefore, we extracted design and process parameter and obtained optimal electrical characteristics. The breakdown voltage was 724 V and The on state voltage drop was 1.746 V. The next was carried out optimal design of trench gate power IGBT. We did this research by same drift thickness and resistivity of planar gate power IGBT. As a result of experiment, we obtain 720 V breakdown voltage, 1.32 V on state voltage drop and 4.077 V threshold voltage. These results were improved performance and fabrication of trench gate power IGBT and planar gate Power IGBT.

Reproducible Chemical Mechanical Polishing Characteristics of Shallow Trench Isolation Structure using High Selectivity Slurry

  • Jeong, So-Young;Seo, Yong-Jin;Kim, Sang-Yong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.4
    • /
    • pp.5-9
    • /
    • 2002
  • Chemical mechanical polishing (CMP) has become the preferred planarization method for multilevel interconnect technology due to its ability to achieve a high degree of feature level planarity. Especially, to achieve the higher density and greater performance, shallow trench isolation (STI)-CMP process has been attracted attention for multilevel interconnection as an essential isolation technology. Also, it was possible to apply the direct STI-CMP process without reverse moat etch step using high selectivity slurry (HSS). In this work, we determined the process margin with optimized process conditions to apply HSS STI-CMP process. Then, we evaluated the reliability and reproducibility of STI-CMP process through the optimal process conditions. The wafer-to-wafer thickness variation and day-by-day reproducibility of STI-CMP process after repeatable tests were investigated. Our experimental results show, quite acceptable and reproducible CMP results with a wafer-to-wafer thickness variation within 400$\AA$.

Highly Reliable Trench Gate MOSFET using Hydrogen Annealing (수소 열처리를 이용한 고신뢰성 트렌치 게이트 MOSFET)

  • 김상기;노태문;박일용;이대우;양일석;구진근;김종대
    • Journal of the Korean Vacuum Society
    • /
    • v.11 no.4
    • /
    • pp.212-217
    • /
    • 2002
  • A new technique for highly controllable trench corner rounding at the top and bottom of the trench using pull-back and hydrogen annealing has been developed and investigated. The pull-back process could control the trench corner rounding radius at the top comers of the trench. The silicon migration generated by hydrogen annealing at the trench coiners provided (111) and (311) crystal planes and gave a uniform gate-oxide thickness, resulting in high reliable trench DMOSFETs with highly breakdown voltages and low leakage currents. The breakdown voltage of a trench DMOSFET fabricated using hydrogen annealing was increased by 25% compared with a conventional DMOSFET. The reasonable drain current of 45.3 A was obtained when a gate voltage of 10 V was supplied. The on-resistance of the trench gate DMOSFET fabricated using the trench cell of 45,000 was about 55 m(at a gate voltage of 10 V under a drain current of 5 A.

Oxide Planarization of Trench Structure using Chemical Mechanical Polishing(CMP) (기계화학적 연마를 이용한 트렌치 구조의 산화막 평탄화)

  • 김철복;김상용;서용진
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.10
    • /
    • pp.838-843
    • /
    • 2002
  • Chemical mechanical polishing(CMP) process has been widely used to planarize dielectric layers, which can be applied to the integrated circuits for deep sub-micron technology. The reverse moat etch process has been used for the shallow trench isolation(STI)-chemical mechanical polishing(CMP) process with conventional low selectivity slurries. Thus, the process became more complex, and the defects were seriously increased. In this paper, we studied the direct STI-CMP process without reverse moat etch step using high selectivity slurry(HSS). As our experimental results show, it was possible to achieve a global planarization without the complicated reverse moat process, the STI-CMP process could be dramatically simplified, and the defect level was reduced. Therefore the throughput, yield, and stability in the ULSI semiconductor device fabrication could be greatly improved.

Study on the Electrical Characteristics of 600 V Trench Gate IGBT with Single N+ Emitter (600 V급 IGBT Single N+ Emitter Trench Gate 구조에 따른 전기적 특성)

  • Shin, Myeong Cheol;Yuek, Jinkeoung;Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.5
    • /
    • pp.366-370
    • /
    • 2019
  • In this paper, a single N+ emitter trench gate-type insulated gate bipolar transistor (IGBT) device was studied using T-CAD, in order to achieve a low on-state voltage drop (Vce-sat) and high breakdown voltage, which would reduce power loss and device reliability. Using the simulation, the threshold voltage, breakdown voltage, and on-state voltage drop were studied as a function of the temperature, the length of time in the diffusion process (drive-in) after implant, and the trench gate depth. During the drive-in process, a $20^{\circ}C$ change in temperature from 1,000 to $1,160^{\circ}C$ over a 150 minute time frame resulted in a 1 to 4 V change in the threshold voltage and a 24 to 2.6 V change in the on-state voltage drop. As a result, a 0.5 um change in the trench depth of 3.5 to 7.5 um resulted in the breakdown voltage decreasing from 802 to 692 V.

Modified Trench MOS Barrier Schottky (TMBS) Rectifier

  • Moon Jin-Woo;Choi Yearn-Ik;Chung Sang-Koo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.2
    • /
    • pp.58-62
    • /
    • 2005
  • A trench MOS barrier Schottky (TMBS) rectifier is proposed which utilizes the upper half of the trench sidewall as an active area. The proposed structure improves the forward voltage drop by 20$\%$ in comparison with the conventional one without degradation in breakdown voltage. An analytical model for the field distribution is given and compared with two-dimensional numerical simulations.

A Study on Switching Characteristics of 1,200V Trench Gate Field stop IGBT Process Variables (1,200V 급 Trench Gate Field stop IGBT 공정변수에 따른 스위칭 특성 연구)

  • Jo, Chang Hyeon;Kim, Dea Hee;Ahn, Byoung Sup;Kang, Ey Goo
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.350-355
    • /
    • 2021
  • IGBT is a power semiconductor device that contains both MOSFET and BJT structures, and it has fast switching speed of MOSFET, high breakdown voltage and high current of BJT characteristics. IGBT is a device that targets the requirements of an ideal power semiconductor device with high breakdown voltage, low VCE-SAT, fast switching speed and high reliability. In this paper, we analyzed Gate oxide thickness, Trench Gate Width, and P+Emitter width, which are the top process parameters of 1,200V Trench Gate Field Stop IGBT, and suggested the optimized top process parameters. Using the Synopsys T-CAD Simulator, we designed IGBT devices with electrical characteristics that has breakdown voltage of 1,470 V, VCE-SAT 2.17 V, Eon 0.361 mJ and Eoff 1.152 mJ.

Dielectric Layer Planarization Process for Silicon Trench Structure (실리콘 트랜치 구조 형성용 유전체 평탄화 공정)

  • Cho, Il Hwan;Seo, Dongsun
    • Journal of IKEEE
    • /
    • v.19 no.1
    • /
    • pp.41-44
    • /
    • 2015
  • Silicon trench process for bulk fin field effect transistor (finFET) is suggested without using chemical mechanical polishing (CMP) that cause contamination problems with chemical stuff. This process uses thickness difference of photo resistor spin coating and silicon nitride sacrificial layer. Planarization of silicon oxide and silicon trench formation can be performed with etching processes. In this work 50 nm silicon trench is fabricated with AZ 1512 photo resistor and process results are introduced.