Lee Moon-Ho;Zhang Xiao-Dong;Pokhrel Subash Shree;Choe Chang-Hui;Hwang Gi-Yean
Journal of electromagnetic engineering and science
/
v.6
no.4
/
pp.244-252
/
2006
A block Jacket transform and. its block inverse Jacket transformn have recently been reported in the paper 'Fast block inverse Jacket transform'. But the multiplication of the block Jacket transform and the corresponding block inverse Jacket transform is not equal to the identity transform, which does not conform to the mathematical rule. In this paper, new binary block Jacket transforms and the corresponding binary block inverse Jacket transforms of orders $N=2^k,\;3^k\;and\;5^k$ for integer values k are proposed and the mathematical proofs are also presented. With the aid of the Kronecker product of the lower order Jacket matrix and the identity matrix, the fast algorithms for realizing these transforms are obtained. Due to the simple inverse, fast algorithm and prime based $P^k$ order of proposed binary block inverse Jacket transform, it can be applied in communications such as space time block code design, signal processing, LDPC coding and information theory. Application of circular permutation matrix(CPM) binary low density quasi block Jacket matrix is also introduced in this paper which is useful in coding theory.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.45
no.5
/
pp.52-62
/
2008
In this paper, we develop a method that changes the resolutions of images in an arbitrary block transform domain by using a filter that suits to the characteristics of the underlying images. To accomplish this, we represent each procedure resizing images in an arbitrary transform domain as matrix multiplications and we derive the matrix that scales the image resolutions from the matrix multiplications. The resolution scaling matrix is also designed to be able to select the up/down-sampling filter that suits the characteristics of the image. Experiments show that the proposed method produces the reliable performances when it is applied to various transforms and to images that are mixed with predicted and non-predicted blocks which are generated during video coding.
Journal of the Korean Institute of Telematics and Electronics B
/
v.31B
no.7
/
pp.91-100
/
1994
The lapped orthogonal transform(LOT) has been recently proposed to alleviate the blocking effects in transform coding. The LOT is known to provide an improved coding gain than the conventional transform. In this paper, we propose a prefilter approach to design the LOT bases with the view of maximizing the transform coding gain. Since the nonlinear phase basis is inappropriate to the image coding only the linear phase basis is considered in this paper. Our approach is mainly based on decomposing the transform matrix into the orthogonal matrix and the prefilter matrix. And by assuming that the input is the 1st order Markov source we design the prefilter matrix and the orthogonal matirx maximizing the transform coding gain. The computer simulation results show that the proposed LOT provides about 0.6~0.8 dB PSNR gain over the DCT and about 0.2~0.3 dB PSNR gain over the conventional LOT [7]. Also, the subjective test reveals that the proposed LOT shows less blocking effect than the DCT.
This paper addresses multi-window Gabor frames with rational time-frequency product. Such issue was considered by Zibulski and Zeevi (Appl. Comput. Harmonic Anal. 4 (1997), 188-221) in terms of Zak transform matrix (so-called Zibuski-Zeevi matrix), and by many others. In this paper, we introduce of a new Zak transform matrix. It is different from Zibulski-Zeevi matrix, but more direct and convenient for our purpose. Using such Zak transform matrix we characterize rational time-frequency multi-window Gabor frames (Riesz bases and orthonormal bases), and Gabor duals for a Gabor frame. Some examples are also provided, which show that our Zak transform matrix method is efficient.
This paper propose the method to derive RM(Reed-Muller) expansion coefficients for Multiple-Valued function. The general method to obtain RM expansion coefficient for p valued n variable is derivation of single variable transform matrix and expand it n times using Kronecker product. The transform matrix used is p$^{n}$$\times$ p$^{n}$ matrix. In this case the size of matrix increases depending on the augmentation of variables and the operation is complicated. Thus, to solving the problem, we propose derivation of RM expansion coefficients using p$\times$p transform matrix and Karnaugh-map.
The Journal of Korean Institute of Communications and Information Sciences
/
v.32
no.4C
/
pp.440-446
/
2007
This paper addresses a new representation of DFT matrix via the Jacket transform based on the element inverse processing. We simply represent the inverse of the DFT matrix following on the factorization way of the Jacket transform, and the results show that the inverse of DFT matrix is only simply related to its sparse matrix and the permutations. The decomposed DFT matrix via Jacket matrix has a strong geometric structure that exhibits a block modulating property. This means that the DFT matrix decomposed via the Jacket matrix can be interpreted as a block modulating process.
This paper propose the method to produce GRM(Generalized Reed-Muller)expansion. The general method to obtain GRM expansion coefficient for p valued n variable is derivation of single variable transform matrix and expand it n times using Kronecker product. In this case the size of matrix increases depending on the augmentation of variables. In this paper we propose the simple algorithm to produce GRM coefficient using a single variable transform matrix.
Journal of the Institute of Electronics and Information Engineers
/
v.53
no.4
/
pp.106-114
/
2016
In this paper, we propose an efficient integer inverse transform structure for vp9 decoder. The proposed structure is a hardware structure which is easy to control and requires less hardware resources, and shares algorithms for realizing entire DCT(Discrete Cosine Transform), ADST(Asymmetric Discrete Sine Transform) and WHT(Walsh-Hadamard Transform) in vp9. The integer inverse transform for vp9 google model has a fast structure, named butterfly structure. The integer inverse transform for google C model, unlike universal fast structure, takes a constant rounding shift operator on each stage and includes an asymmetrical sine transform structure. Thus, the proposed structure approximates matrix coefficient values for all transform mode and is used to matrix operation method. With the proposed structure, shared operations for all inverse transform algorithm modes can be possible with reduced number of multipliers compared to the butterfly structure, which in turn manages the hardware resources more efficiently.
In this work, we successfully extended dimensional differential transform method (DTM), by presenting and proving some new theorems, to solve the non-linear matrix differential Riccati equations(first and second kind of Riccati matrix differential equations). This technique provides a sequence of matrix functions which converges to the exact solution of the problem. Examples show that the method is effective.
In this paper, we address a new fast DCT-II/DFT/HWT hybrid transform architecture for digital video and fusion mobile handsets based on Jacket-like sparse matrix decomposition. This fast hybrid architecture is consist of source coding standard as MPEG-4, JPEG 2000 and digital filtering discrete Fourier transform, and has two operations: one is block-wise inverse Jacket matrix (BIJM) for DCT-II, and the other is element-wise inverse Jacket matrix (EIJM) for DFT/HWT. They have similar recursive computational fashion, which mean all of them can be decomposed to Kronecker products of an identity Hadamard matrix and a successively lower order sparse matrix. Based on this trait, we can develop a single chip of fast hybrid algorithm architecture for intelligent mobile handsets.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.