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Abstract

A block Jacket transform and. its block inverse Jacket transform have recently been reported in the paper “Fast block
inverse Jacket transform”. But the multiplication of the block Jacket transform and the corresponding block inverse
Jacket transform is not equal to the identity transform, which does not conform to the mathematical rule. In this paper,
new binary block Jacket transforms and the corresponding binary block inverse Jacket transforms of orders N=2*, 3*and
5* for integer values k are proposed and the mathematical proofs are also presented. With the aid of the Kronecker
product of the lower order Jacket matrix and the identity matrix, the fast algorithms for realizing these transforms
are obtained. Due to thé simple inverse, fast algorithm and prime based p* order of proposed binary block inverse
Jacket transform, it can be applied in communications such as space time block code design, signal processing, LDPC
coding and information theory. Application of circular permutation matrix(CPM) binary low density quasi block Jacket
matrix is also introduced in this paper which is useful in coding theory.

Key words : Block Algorithms, Binary Block Inverse Jacket Transform, Fast Algorithms, Kronecker Product, Sparse

Matrix Factorization, Low Density Matrix.

[ . Introduction

Discrete orthogonal transform™™ ™ have highly prac-
tical value for representing signals and images, espe-
cially for propose of data compression, for Walsh-Hada-
mard orthogonal sequence generator in code division
multiple access(CDMA), coded modulation and spread
spectrum communication!® ! Specially, Walsh-Hadamard
transform is an orthogonal matrix with highly practical
values for signal sequence transforms and data proce-
ssing[le[4]’[2°]. Jacket matrices! ™M™ which are moti-
vated by the center weighted Hadamard matrices?!'
21" is class of matrices with their inverse being deter-
mined by the element-wise of the matrix. Mathemati-
cally, let A=(ay) be a matrix, if, A~'=(a,")7, then the
matrix 4 is a Jacket matrix, where T denotes the trans-
pose and ( - ) denotes a matrix. Since the inverse of the
Jacket matrix can be calculated easily, it is very helpful
to employ this kind of matrix in the signal proce-
ssing "M% encoding™, mobile communication™*'H%]
sequence design[m, cryptography[zz]’m] and orthogonal
code design[zs]. Especially, the interesting matrices, such
as Hadamard, DFT matrices, belong to the Jacket matrix
family[24]. In addition, the Jacket matrices are associated
with many kind of matrices, such as unitary matrices
and Hermitian matrices which are very important in co-
mmunication (e.g., encoding), mathematics and physics.

Recently, Lee and Hou in [1] proposed one dimen-
sional and two dimensional fast algorithms for block
inverse Jacket transforms. Their block inverse Jacket
transform is, in some sense, not real inverse Jacket
transform from mathematical point of view, since their
inverse does not satisfy the usual condition, i.e., the
multiplication of a matrix with its inverse matrix is not
equal to the identity matrix. For example, the equation’s
(4) and (5) in [1] can be stated as follows:

VLIL,

It
o = | =
—_ O = ©
— o |lo —

It is nature to seek better block Jacket transform and
the corresponding block inverse transform which can
overcome the problem arising in [1].
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This paper is organized as follows: in section I, we
present a binary block Jacket and corresponding block
inverse transform of order 2. Section II presents the
binary block inverse Jacket transform of orders N=3"
and 5* for integer value k. Section IV presents the two
dimensional fast algorithms for binary block Jacket
transform. In section V, application of binary low den-
sity quasi block Jacket matrices are introduced. Finally,
some conclusions are drawn in section VI.

1. Binary Block Jacket Transform of Order 2

An mxm binary matrix [B]. over Galois field GF(2),
which has only two elements 0 and 1, is called a binary
Jacket matrix if [Bl. is invertible [B];'=[B17,i.e.,
[Bl,[Bl,'=[B],[Bl"=[1], where T is the transpose
of the matrix [B], and [/], is the identity matrix. For
example,

[B]2=[? ;] [B]2[B]T=(? é) [? ;J=[1]2. (1

Hence [B],!=[B]] is a binary Jacket matrix. Gene-
rally, we may define binary block Jacket matrix as fo-
HNows:

Definition 2.1 Let

Bll Bl2 Blm
[B]m - BZI B22 BZm

ml m2 mm
and
Bll BZl Bml
pLe e
B, By, - Bum )

be an mxm block matrix and the transpose of block
matrix B, where Bj is a kxk matrix for all i, j=1,---,m.
B is called a binary block Jacket matrix, if [B],'=

[BIT,i.e,

BL -IBLie, [BLIBE =[LBL <. )

where [[]. is the block identity matrix whose each block
is of kxk order. It is easily checked that if each block
is 1x1 then binary block Jacket matrix is coincident
with binary Jacket matrix. For example, let

1 o] (1 1}
o= , B= .
[0 1 11 )
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By a simple calculation, we have aa+ 88=[I]> and ap
+ Ba=0=0. Hence

[a ﬂ][a ,B]T_[aa+ﬁﬂ aﬂ+ﬂa]_ [1.] ©
£ al\B a) \af+pa aa+pp) (0 [L])

Therefore,

[; g:[; 5]7:[; f] (6)
Thus,
a2
(7
vE-(5 2
(3
and
VL.IL =[1, =
)

Hence, 2x2 the binary block matrix is a binary block
Jacket matrix [J];. Next, we introduce the block Kro-
necker product of two block matrices. For two mxm
block matrices,

All A12 Alm
Aol A 4,
Aml Am2 Amm
Bll BIZ Blm
B A B21 B22 B2m
Bml Bm2 Bmm (10)

where, A; and Bj; are kxk matrices. The block Kro-
necker product of 4 and B is defined to be

A®B = Ay *B  Ap*B Ay * B
A *B An*B .. A, *B (11
where
AijBll AijBIZ AijBlm
A*B= AijBZI AijBZZ Aa‘szm
; =
Aiijl Aiijz Aiijm (12)
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If each block 4; and By of 4 and respectively is 1x1,
then the block Kronecker product of two block matrices
is coincident with the conventional Kronecker product
of two matrices. For example, from (7),

a’® aff pa ﬂé
af a®> B pa
J, e, = .
bLebk- 0 L

B Pa af a’ (13)

From now, throughout this paper, we only consider
that each block in each block matrix is a 2x2 submatrix.
We introduce binary block Jacket transform and binary
block inverse Jacket transform. Let [J]», be a binary
block Jacket matrix, for the one dimensional binary
Jacket transform, we can transform a temporal or spatial
vector x into a transform vector y by

y=Wlx (14)

and binary block inverse Jacket transforms of y is
=l y =[]y (15)

A block permutation matrix [Plyv=(px) is defined as
for 1<k, 1<N,

I, i t=k+1(mod M)
“lo otherwise (16)

where [/]; is the 2x2 identity matrix. The block per-
mutation matrices P are referred to circulant permuta-
tion matrices. Moreover, it is easy to see that {I, P,
- ,P"'Y forms an Abelian group with tradition multi-
plication which is corresponding to the group of all
complex N-roots of unity with tradition multiplication.
For example, if N=2,

(" ey W)

(17)
If N=3,
[, o o
PR =[O . o }
o o [}
o 1}, o
[P ]3 =[0 0 [I ]2 ],
[, o 0
o o [,
[PE=|l, o o
o [, o (18)

[/] in [9] may be regarded to the smallest order bi-
nary block Jacket transform. Moreover, [J], is a circu-
lant block matrix, since it can be written to be
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V), = axli], + p*[P], {Z ﬁ] (19)

The larger order binary block Jacket matrices can be
generated by the following recursive relation:

[J]N = [J]N/2 ® [J]2> Nz4 (20)

Since by (13) and definition of transpose of block
matrices, we have

VI =L ebl) =bi el Q1)
Then

LI = (1, @171, (VT ol /T;)
~(VLIT )e(VLT;)
=[], 8], =[1],. (22)
Therefore, [/1,[;'=[J1,{NF=[1], and [J]s is a 4x4

binary block Jacket matrix. Generally, we can prove that
(N1, 1s a 22 binary block Jacket matrix for & is

positive integer. In fact,

L U = (/) OL) (/] 1)

= (/)0 811,15 V)

(V1 [T )L, 1% )

[1]2“ ®[1]2 [I]z" ’ (23)
SO []] 2*1[I.|T" and [ ] 2*[]] 2h_[]] 2"[]] 2/'_[1] ok AS

to fast algorithms of binary block Jacket transforms may

be based on the factorization of binary block Jacket

matrices. For the 4x4 binary Jacket matrix, [J]s can be
decomposed to the product of two sparse matrices,

[‘]]4 = [J]2 ®[‘]]2

= ([J]z ®[I]2X[I]2 ®[J]2)
a 0 B O\(a g 0 O
0 a 0 Bl a« 0 o
1B 0 a oflo 0 a g
0 F 0 )0 0 B « (24)

Further, from (20) and (24), we can derive a general
formula for construction of order N=2k, k=1,2---, binary
block Jacket matrices as

[/ = (V1 81V1,)

([T 1]2)([1]zn ®[/],)

(/1. @) 811, (171 ®1v1,)

(/)= (), 8121, )7 ®17),)

(k[JlLu@’[f 1 ([ © (1, ®[1)) (1, ©11,)

(k- @bk olrk)
=0 (25)



The factor graph corresponding to (25) is similar to
the graph in [1] and omitted.

IIl. Binary Block Inverse Jacket Transform of Orders
3“ and 5 -

In this section, binary block Jacket transform(BJT)
and binary block inverse Jacket transform with orders 3*
and 5° are proposed respectively.

From the equations (18) and (12), the smallest order
3x3 binary block Jacket transform may be written as

V], = [P] + o, [P], +,[PL. (26)

One can obtain the definition of block Jacket matrices,
VLT = (alP] +a[P), +a[PT)
x(a,[P] + [P, + e, [p]l)’

(aoa +aa] +a,q, )[P]
(a al +aa, +a,a )[P]3
(

T T T 2
a.a, +ao, +a,a, )[P]3

=[1], 27
if satisfy the following conditions,
(aoag + alalT + azaZT): 1,
(aoazT +aaf + azalT)= 0
(aoal + alaz + azag)= 0, (28)

For example, let

ao:(o 0} al:(l 0]’ azz(o oj.
0 1 0 0 0 0 (29)

be three 2x2 binary matrices over GF(2) which satisfy
the above conditions. Hence [/1;[/1,'=[/1;,[N7=I[1],.

In a similar way, the smallest order 3 binary block
Jacket matrix can be written as the following form

a, a a,
[J]3= a; @y a (=

o a, a

1
0

0
0

o ~|lo oo ©
o ol oo ©
o oo ~|lo o
— olo olo o

S oo o= ©

(30)

which is also a circulant binary block Jacket matrix.
Using Kronecker product of block Jacket matrices, the
larger order 3" binary block Jacket transform may be
governed by the following recursive relation, i.e.,

[‘]]N = [‘]]N/S ® [J]3>

where N=3* for k=1,2---.

N29, 31

By similar method, it can be

LEE et al. :

FAST BINARY BLOCK INVERSE JACKET TRANSFORM

proved that [J] ;. is a binary block Jacket transforms of

order 3*. Further, we can also derive a fast algorithm
based on factorization of binary block Jacket matrices,

My=£yH¢H®UL®Uh) )

For example, the binary block matrix of order 9 based
on [J]3 may be expressed to

Viell =Ulell)Lell) (33)

The factor graph corresponding to (33) is similar to
Fig. 1 in [1]. Now, we next consider how to construct
the order 5* binary block Jacket transform. The smallest
order 5 binary blocks Jacket transform can be defined as
follows:

VL= (aPE+aPL+£PE+APL=AIPR) 5y

where [P}? is 5x5 the block identity matrix and others [P)s
are the 55 block permutation matrices. So we can get,
LT =(A02T 5 [P] AURTAGRYALY
x(B.[PL +A[P),+ APL+BPL+B[PT)
= (8.4, +ﬁﬁ+@@+@@+@ﬂnﬂ
(BB + B, + BB+ BB, +B.5 )P
(BB + BB, +B.B; + BB + BB )[P]
(BB + BB +BB+BS +BS )[P]
(ﬂoﬂl +ﬂ1ﬂ2 +ﬁ1ﬁ3 +ﬁ3ﬂ4 +ﬂ4ﬁo )[P] 5 (35)

if satisfy the following conditions

(BB + BB +B.5 + BB+ BB )=
BB+ BB, + BB+ BB+ BB =0
BB+ BB+ BB + BB +BB =0
BB+ BB + B+ BB + BB =0
BB +BS, + By + BB+ BB =0 (36)

For example, let
0 11
(i)

1y, (1

ﬂo_(l Jﬁl_{o
00 00

%=&<Jm=& J' 37)

be five 2x2 binary matrices over GF(2) which satisfy
the above conditions. Hence [/1,[/1;'=[/1;[/17=[1]; and
the order 5 binary block Jacket transform can be written as

Bo B B2 By B
Bs Bo B B B
[J ]5 =\f Bs o B B
B B B B B
B B B By B
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1 1(1. 01 1|0 0[]0 ©
t 1{o 1|1 1]0 oflo o
o 0ol1 1]1 o1t 1]0 o
0 of1 1|10 1|1 110 O
o ofo o1 1|1 of1 1
o oo o1 1]0 1]1 1
1 110 olo ofl1 1|1 o
1 10 0/l0 o|l1 1|0 1
1 of1 1|0 olo o 1 1
o 111 110 olo ol 1 1 (38)

Clearly, [J]s is also circulant binary block Jacket
matrix. Using the Kronecker product of two matrices,
we can generate higher order binary block Jacket trans-
form, i.e.,

Vlg =[] ®[)s, for k=12, (39)

The fast algorithm for order 5° binary block Jacket
matrix can derive similar fashion as (32).

Il - 1:0[([115»« ol ell) w0

where [ 1] ,,= 1. Further, it is easy for us to construct or-
ders 6, 10, 15, 25, etc. binary block Jacket matrices.

Similarly as in equations (25), (32), and (40), we can
derive the order pk fast binary block Jacket transform,
where p is the prime number.

If the matrix of order —6, then the binary block
Jacket transform can be written as [/];=([/],Q[/,).
The block Jacket matrix of order [J]¢ will be,

[J]6 =([J]2®[I]3)([1]2®[J]3) 41N

Further, with the aid of recursive relation, the matrix
(7] = ([N - ®LJg) is order of 6" binary block Jacket

transform. The fast algorithm depends on the following
sparse factorization.

[J]G’* = ([Jls"-‘ ® [I]z)([‘]]d"1 ® [J]z)- 42)
If the matrix is of order 15, we can write
[Vhs=ULel)- (43)

The signal flow graph corresponding (44) is shown in
Fig. 1 and its factorization will be

[‘]]15 = ([113 ® [J]s)([‘]]3 ® [I]s)' (44)

Bo B B B Ps
Bs Bo B B B

= [1]3® B By B B B ><([‘]]3®[[]5)
B B By B B

ﬂl ﬂz ﬂ3 ﬂ4 :BO (45)
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Table 1. Computational complexity of the fast algori-
thms with directed computation(DC) and pro-
posed(P) of the block Jacket transform. In the
Table ADD and MUL are the abbreviations
of additions and multiplications.

Proposed Proposed Proposed
DC N=2" N=3* N=3F
ADD |N(N—1)| Nlog:N 2NlogsN 4NlogsN.
MUL | NxN 1/2Nlog:N | 4/3NlogsN | 16/5NlogsN

5-Order transfonn PE

3-Order transform PE

Fig. 1. Jacket transform signal flow graph of order-15.

It can be seen that the computation of order-15 matrix
is the combination of three times of order 5 and five
times of order 3. In general, the computational com-
plexity of the proposed fast algorithm and higher order
binary block Jacket transform implementations inverse
are similar to those in [1]. For example, for binary block
Jacket transform of order N=2 requires NlogN addi-
tions and 1/2Nlog;N multiplications. For binary block
Jacket transform of order N=3* requires 2NogsN addi-
tions and 4/3NlogsN multiplications. For binary block
Jacket transform of order N=5* requires 4NlogsN addi-
tions and 16/5NlogsN multiplications. These results su-
mmed up as in the Table 1.

IV. Two Dimensional Fast Algorithm for Binary Block
Jacket Transform

The two dimensional matrix transforms a temporal/
spatial matrix into a transformed matrix as

=[], x(1,) (46)

Generally, the linear transform of matrix X shown as
AXB=Y can be expressed by the transformation of the
column-wise stacking vector of X as M7,
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([ J]N ]| J]N)_vec( X) =vec(Y) @7 The matrices E" , for 0<h<p—1 are refer to circulant
permutation matrices(CPM) It can be easily seen that
Thus, the two dimensional binary block Jacket matrix {1, E, - ,E"'} from an Abelian group with traditional
in (46) can be expressed by matrix multlphcatlon and =E.
For example, let p=5, we have

vec(Y)=([J| ®|J], |vec(X).
()= (7)o )ree() (48) 1 0 0 0 0 00 0 0 1
Hence, the two dimensional fast algorithm for binary 010 0 0 1 00 00
block Jacket transform decomposition based on one I={0 0 1 0 o, E=j0 1 0 0 0
dimensional fast algorithm may be described as follows: 0 0 0 1 0 0 01 0 O
‘ : 0o 0 0 0 1 0O 0 0 1 0
[J],, = [J]N2 ®[J]N1 = ([I]N2 ®[J]N1 )([] ]N2 ®[I]N1) (49)
o 0 0 1 0 0o 0 1 0 0
For example, Ni=N;=4=2’, then 00 0 01 00 0 1 0
=1 0 0 0 0f, E3={0 0 0 0 1
[J]4®[J] =([1122 ®[J]zz)([J]zz ®[I]22) 0 1 0 0 0 1 0 0 0 0
([ ®[J eplLelLell) o L0 e
E*={0-0 0 1 0
0o 0 0 0 1
- =%
X X
X’;\\ 77 XX’XXX;;{’ Lo o oo (53)
X 3
7 ',\&\\\//// KKK o Let
X"i%\iz)?(/X)é//’ 5 . X, Jrooo A1 E*
o M e Mg 1] o 1
¥ SRR % = (54)
N =Sz g K ,_[1 o] ]I 0
X”:é//XX\Q\ ><:X“ I P
ij:/{?////\\\\ EO04 ><: £
s - . }
/AN P 2 (1 EN L BT
Lo AN ><:X” o 1] ]0 1 ’ (55)
X, X,
Fig. 2. 2-D 4x4 signal flow graph of Jacket transform. (AQ+QA)=
o ko e S )
V. Application of Binary Low Density Quasi Block Borllo 1o 1 E T
Jacket Matrices(LDQBJ) {1 I]J{o 1]_1
roolt{r 1) "
(56)
In this section, we present low density quasi block
Jacket matrices which are over GF(2), ie., binary ma- anq
trices. () x (@A) = I ] [o rn_[1 o1_,
Let p be a prime, and let I o) |1 1] |0 1y
(57)
E"=le, . ie.
o] - .
where A=ALQ=Q AT =Q"=1),,
AQ+QA=1,,
1 fori =<j+h> (AQ)—I =QA,(QA)_1 _AC (58)
0 otherwise (52)
Furthermore,
where
AQXQA_AQ+QA AT +Q° I O
(j+h)=j+hmod pand 0<i, j,h< p-1. Q Al |A Q] | Q*+A* QA+AQ| |O 1] (89
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i.e

A Q' [Q A
Q Al |AQ (60)
Let,

I o I E*
JA[A Q]_ Er1 0 1
Q A I E*" 1 o
h
o I E I (61)

It can be easily checked that

_1_
JxJ _12p (62)
where
I E* 1 o0
_M[Q A} o I E" I
J = =
A Qo 1 ET?
h

or

= 2{02 IZ}X[A Q}={Oz 12} ':A‘l Ql}
I, O Q A L 0 Q! A (64)

We can decompose this order-2 binary block Jacket
matrix as equation (25). The proposed hardware imple-
mentation is shown in Fig. 3. The shift register provides
the basic identity matrix which is circularly permuted by
circular permutation block, and fast algorithm products
the whole matrix by using proper processing element
construction.

Now we consider the density of 0’s and 1’s in 4px4p
binary matrix denoted by

N
4y = ———
r NO +N (65)

e N
[ Shift Register j» Identity Matrix

A A
' ™
Circular

Permutation
A g

r ™
\ J
[ LDQBJ Fast Algorithm
Matrix PE
. ] \ J

Fig. 3. LDQBJ architecture of the fast encoding algorithm
for the matrix decomposition.
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where N, the N, numbers of 0’s and 1 are respectively.
The total number of 0’s and 1’s in 4px4p binary matrix
is 16p2. There are 121, E"h, and E". Each of I, E" and
E’ contains only p 1’s. The total number of 1’s is 12p.
Thus the density of 1’s in J is

12p 3

4p

It means that this quasi Jacket-matrix is low density
matrix.

For example, let p=5 and A=2, then, size of the matrix
well be 20x20, which can be factorize like,

[‘]]20 = [J]S ®[‘]]4

- (. o)), elr) (67)

Remark: J is a (3,3)-low density matrix, i.e., each row
and each column of J contains exactly three 1’s.

Mo 0000 000010 000007100
0100 0(00000/0100000TGO0T10
0010 0(/00000[00100/00T0O01
00 010|(0 0000[060010/1000°0
00 060106 60060{60 60101000
00 010[/1000COGJl00O0O0O100 00
00 00 1/01000f(00 00001000
10 00 0[0 0100|0000 GO0 00100
0100 0/0 001000 0060/000O0T10
0010 0/0 0001|0000 UO000G00TO01
JZO:IO0000’01001000000000
0100 0[0 0010|001 060O0|{0 0O 0O
001000000160 100/0CO0O0O0
00 01 0[/10000(00 0106|000 C00
00 00 1/01 00606000 T1/0 00 00
00 00Ot 00O0OC0O0OT1 O1 0000
000000100000 00T10100¢0
00 000001001000 000100
00 00 O0[00O010(0T1 00000010
_0-0000000010010000001J
[To 0 0 0|0 0 100J1 000 0|0 0O 00C]
0100 0[{C0O010(01 0000 0000
0010 0{00001/00100/0 0000
00 01 0{10000[(00 01000000
00 00 1/0 1 000(00 00 1/0 00 00
00 0001000000010 100 00
00 00001t 000/000O0T10T10 00
00 0000 0100/(1006000T0T100¢0
00 000 00010/010000 00710
L oo oo oloo0oo0o1foo 100000001
701775 0 0 0/0 0 00010 00000100
0100000 00O001 00000010
0010 0(00000/001000000°1
00 01 0(0 000000010100 00
00 0 01/0 0 000/00 0606101000
00 01 0(10000[0000UO0100 00
00 00 1/01000{00 0000710 00
1000 0/0 0 100{00 000007100
0100 0[{00010/00 0000 00T1O0
00 10 0/000O0T1/00 00 00 00 0 1]




VI. Conclusion

Fast binary block Jacket transforms and binary block
inverse transforms are proposed, which overcome the
mathematical problem in [1] and also satisfy the rela-
tion [ /] y[/5'=[11,. The orders 2k, 3* and 5* binary
block Jacket transforms are constructed and their binary
block inverse transforms are easily obtained by the
transpose of binary block transforms. The one and two
dimensional fast algorithm for binary block transforms is
proposed and valid, which are based on the recursive
forms and the Kronecker product of the identity matrix
and lower order binary block matrix. These block inver-
se Jacket transform and binary low density quasi block
Jacket matrices can be applied to signal processing,

coding theory and orthogonal code design''M/HHIEHI%L
[201,[25]
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