References
- M. A. Akinlar and J.-P. Gabardo, Oblique duals associated with rational subspace Gabor frames, J. Integral Equations Appl. 20 (2008), no. 3, 283-309. https://doi.org/10.1216/JIE-2008-20-3-283
- I. Daubechies, The wavelet transform, time-frequency localization and signal analysis, IEEE Trans. Inform. Theory 36 (1990), no. 5, 961-1005. https://doi.org/10.1109/18.57199
- H. G. Feichtinger and T. Strohmer, Gabor Analysis and Algorithms, Theory and Applications, Birkhauser, Boston, 1998.
- H. G. Feichtinger and T. Strohmer, Advances in Gabor Analysis, Birkhauser, Boston, 2003.
- J.-P. Gabardo and D. Han, Balian-Low phenomenon for subspace Gabor frames, J. Math. Phys. 45 (2004), no. 8, 3362-3378. https://doi.org/10.1063/1.1768621
- J.-P. Gabardo and D. Han, The uniqueness of the dual of Weyl-Heisenberg subspace frames, Appl. Comput. Harmon. Anal. 17 (2004), no. 2, 226-240. https://doi.org/10.1016/j.acha.2004.04.001
- J.-P. Gabardo and Y.-Z. Li, Density results for Gabor systems associated with periodic subsets of the real line, J. Approx. Theory 157 (2009), no. 2, 172-192. https://doi.org/10.1016/j.jat.2008.08.007
- K. Grochenig, Foundations of Time-Frequency Analysis, Birkhauser, Boston, 2001.
- C. Heil, History and evolution of the density theorem for Gabor frames, J. Fourier Anal. Appl. 13 (2007), no. 2, 113-166. https://doi.org/10.1007/s00041-006-6073-2
- F. Jaillet and B. Torresani, Time-frequency jigsaw puzzle: adaptive multiwindow and multilayered Gabor expansions, Int. J. Wavelets Multiresolut. Inf. Process. 5 (2007), no. 2, 293-315. https://doi.org/10.1142/S0219691307001768
- S. Jang, B. Jeong, and H. O. Kim, Compactly supported multiwindow dual Gabor frames of rational sampling density, Adv. Comput. Math. 38 (2013), no. 1, 159-186. https://doi.org/10.1007/s10444-011-9234-z
- S. Jang, B. Jeong, and H. O. Kim, Techniques for smoothing and splitting in the construction of tight frame Gabor windows, Int. J. Wavelets Multiresolut. Inf. Process. 11 (2013), no. 1, 1350005, 18pp.
- S. Li, Discrete multi-Gabor expansions, IEEE Trans. Inform. Theory 45 (1999), no. 6, 1954-1967. https://doi.org/10.1109/18.782117
- Y.-Z. Li and Q.-F. Lian, Gabor systems on discrete periodic sets, Sci. China Ser. A 52 (2009), no. 8, 1639-1660.
- Q.-F. Lian and Y.-Z. Li, The duals of Gabor frames on discrete periodic sets, J. Math. Phys. 50 (2009), no. 1, 013534, 22pp.
- Q.-F. Lian and Y.-Z. Li, Gabor frame sets for subspaces, Adv. Comput. Math. 34 (2011), no. 4, 391-411. https://doi.org/10.1007/s10444-010-9161-4
-
A. Ron and Z. Shen, Affine systems in
$L^2({\mathbb{R}}^d)$ : the analysis of the analysis operator, J. Funct. Anal. 148 (1997), no. 2, 408-447. https://doi.org/10.1006/jfan.1996.3079 - R. M. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, New York, 1980.
- Y. Y. Zeevi, Multiwindow Gabor-type representations and signal representation by partial information, Twentieth century harmonic analysis-a celebration (Il Ciocco, 2000), 173-199, NATO Sci. Ser. II Math. Phys. Chem., 33, Kluwer Acad. Publ., Dordrecht, 2001.
- Y. Y. Zeevi, M. Zibulski, and M. Porat, Multi-window Gabor schemes in signal and image representations, Gabor analysis and algorithms, 381-407, Appl. Numer. Harmon. Anal., Birkhauser Boston, Boston, MA, 1998.
- M. Zibulski and Y. Y. Zeevi, Analysis of multiwindow Gabor-type schemes by frame methods, Appl. Comput. Harmon. Anal. 4 (1997), no. 2, 188-221. https://doi.org/10.1006/acha.1997.0209
Cited by
- K-G-FRAMES AND STABILITY OF K-G-FRAMES IN HILBERT SPACES vol.53, pp.6, 2016, https://doi.org/10.4134/JKMS.j150499
- Subspace mixed rational time-frequency multiwindow Gabor frames and their Gabor duals vol.2018, pp.1, 2018, https://doi.org/10.1186/s13660-018-1876-7