• Title/Summary/Keyword: Time-varying interval

Search Result 106, Processing Time 0.019 seconds

Stability Condition for Discrete Interval Time-varying System with Time-varying Delay Time (시변 지연시간을 갖는 이산 구간 시변 시스템의 안정조건)

  • Han, Hyung-seok
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.5
    • /
    • pp.475-481
    • /
    • 2016
  • In this paper, the new stability condition of linear discrete interval time-varying systems with time-varying delay time is proposed. The considered system has interval time-varying system matrices for both non-delayed and delayed states with time-varying delay time within given interval values. The proposed condition is derived by using Lyapunov stability theory and expressed by very simple inequality. The restricted stability issue on the interval time-invariant system is expanded to interval time-varying system and a powerful stability condition which is more comprehensive than the previous is proposed. As a results, it is possible to avoid the introduction of complex linear matrix inequality (LMI) or upper solution bound of Lyapunov equation in the derivation of sufficient condition. Also, it is shown that the proposed result can include the many existing stability conditions in the previous literatures. A numerical example in the pe revious works is modified to more general interval system and shows the expandability and effectiveness of the new stability condition.

New Stability Conditions for Positive Time-Varying Discrete Interval System with Interval Time-Varying Delay Time (구간 시변 지연시간을 갖는 양의 시변 이산 구간 시스템의 새로운 안정 조건)

  • Han, Hyung-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.5
    • /
    • pp.501-507
    • /
    • 2014
  • A dynamic system is called positive if any trajectory of the system starting from non-negative initial states remains forever non-negative for non-negative controls. In this paper, new sufficient conditions for asymptotic stability of the interval positive time-varying linear discrete-time systems with time-varying delay in states are considered. The considered time-varying delay time has an interval-like bound which has minimum and maximum delay time. The proposed conditions are established by using a solution bound of the Lyapunov equation and they are expressed by simple inequalities which do not require any complex numerical algorithms. An example is given to illustrate that the new conditions are simple and effective in checking stability for interval positive time-varying discrete systems.

Stability Bound for Time-Varying Uncertainty of Time-varying Discrete Interval System with Time-varying Delay Time (시변 지연시간을 갖는 이산 구간 시변 시스템의 시변 불확실성의 안정범위)

  • Han, Hyung-seok
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.608-613
    • /
    • 2017
  • In this paper, we consider the stability bound for uncertainty of delayed state variables in the linear discrete interval time-varying systems with time-varying delay time. The considered system has an interval time-varying system matrix for non-delayed states and is perturbed by the unstructured time-varying uncertainty in delayed states with time-varying delay time within fixed interval. Compared to the previous results which are derived for time-invariant cases and can not be extended to time-varying cases, the new stability bound in this paper is applicable to time-varying systems in which every factors are considered as time-varying variables. The proposed result has no limitation in applicable systems and is very powerful in the aspects of feasibility compared to the previous. Furthermore. the new bound needs no complex numerical algorithms such as LMI(Linear Matrix Inequality) equation or upper solution bound of Lyapunov equation. By numerical examples, it is shown that the proposed bound is able to include the many existing results in the previous literatures and has better performances in the aspects of expandability and effectiveness.

Stability Condition for Discrete Interval Time-Varying System with Unstructured Uncertainty and Time-Varying Delay Time (비구조화된 불확실성과 시변 지연시간을 갖는 이산 시변 구간 시스템의 안정조건)

  • Hyung-seok Han
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.504-509
    • /
    • 2022
  • In this paper, we deal with the stability condition of linear time-varying interval discrete systems with time-varying delays and unstructured uncertainty. For the time-varying interval discrete system which has interval matrix as its system matrices, time-varying delay time within some interval value and unstructured uncertainty which can include non-linearity and be expressed by only its magnitude, the stability condition is proposed. Compared with the previous result derived by using a upper bound solution of the Lyapunov equation, the new result is derived by the form of simple inequality based on Lyapunov stability condition and has the advantage of being more effective in checking stability. Furthermore, the proposed condition is very comprehensive, powerful and inclusive the previously published conditions of various linear discrete systems, and can be expressed by the terms of magnitudes of the time-varying delay time and uncertainty, and bounds of interval matrices. The superiority of the new condition is shown in the derivation, and the usefulness and advantage of the proposed condition are examined through numerical example.

Stability Condition for Discrete Interval System with Time-Varying Delay Time (시변 지연시간을 갖는 이산 구간 시스템의 안정조건)

  • Han, Hyung-seok
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.6
    • /
    • pp.574-580
    • /
    • 2015
  • The stability condition of linear discrete interval systems with a time-varying delay time is considered. The considered system has interval system matrices for both non-delayed and delayed states with time-varying delay time within given interval values. The proposed condition is derived by using Lyapunov stability theory and expressed by very simple inequality. Compared to previous results, the stability issue on the interval systems is expanded to time-varying delay. Furthermore, the new condition can imply the existing results on the time-invariant case and show the relation between interval time-varying delay time and stability of the system. The proposed condition can be applied to find the stability bound of the discrete interval system. Some numerical examples are given to show the effectiveness of the new condition and comparisons with the previously reported results are also presented.

Model-Free Interval Prediction in a Class of Time Series with Varying Coefficients

  • Park, Sang-Woo;Cho, Sin-Sup;Lee, Sang-Yeol;Hwang, Sun-Y.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.11 no.2
    • /
    • pp.173-179
    • /
    • 2000
  • Interval prediction based on the empirical distribution function for the class of time series with time varying coefficients is discussed. To this end, strong mixing property of the model is shown and results due to Fotopoulos et. al.(1994) are employed. A simulation study is presented to assess the accuracy of the proposed interval predictor.

  • PDF

Stability Bounds of Unstructured and Time-Varying Delayed State Uncertainties for Discrete Interval Time-Varying System (이산 시변 구간 시스템의 비구조화된 불확실성과 시변 지연시간 상태변수 불확실성의 안정범위)

  • Hyung-seok Han
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.871-876
    • /
    • 2023
  • In this paper, we deal with the stable conditions when two uncertainties exist simultaneously in a linear discrete time-varying interval system with time-varying delay time. The interval system is a system in which system matrices are given in the form of an interval matrix, and this paper targets the system in which the delay time of these interval system matrices and state variables is time-varying. We propose the system stability condition when there is simultaneous unstructured uncertainty that includes nonlinearity and only its magnitude and uncertainty in the system matrix of delayed state variables. The stable bounds for two types of uncertainty are derived as an analytical equation. The proposed stability condition and bounds can include previous stability condition for various linear discrete systems, and the values such as time-varying delay time variation size, uncertainty size, and range of interval matrix are all included in the conditional equation. The new bounds of stability are compared with previous results through numerical example, and its effectiveness and excellence are verified.

A modified estimating equation for a binary time varying covariate with an interval censored changing time

  • Kim, Yang-Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.4
    • /
    • pp.335-341
    • /
    • 2016
  • Interval censored failure time data often occurs in an observational study where a subject is followed periodically. Instead of observing an exact failure time, two inspection times that include it are made available. Several methods have been suggested to analyze interval censored failure time data (Sun, 2006). In this article, we are concerned with a binary time-varying covariate whose changing time is interval censored. A modified estimating equation is proposed by extending the approach suggested in the presence of a missing covariate. Based on simulation results, the proposed method shows a better performance than other simple imputation methods. ACTG 181 dataset were analyzed as a real example.

Stability of Linear Systems with Interval Time-varying Delay via New Interval Decomposition (새로운 구간 분해 방법을 이용한 구간 시변지연을 갖는 선형시스템의 안정성)

  • Kim, Jin-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.9
    • /
    • pp.1748-1753
    • /
    • 2011
  • In this paper, we consider the stability of linear systems with an interval time-varying delay. It is known that the adoption of decomposition of delay improves the stability result. For the interval time-delay case, they applied it to the interval of time-delay and got less conservative results. Our basic idea is to apply the general decomposition to the low limit of delay as well as interval of time-delay. Based on this idea, by using the modified Lyapunov-Krasovskii functional and newly derived Lemma, we present a less conservative stability criterion expressed as in the form of linear matrix inequality(LMI). Finally, we show, by well-known two examples, that our result is less conservative than the recent results.

New Stability Criteria for Linear Systems with Interval Time-varying State Delays

  • Kwon, Oh-Min;Cha, Eun-Jong
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.5
    • /
    • pp.713-722
    • /
    • 2011
  • In the present paper, the problem of stability analysis for linear systems with interval time-varying delays is considered. By introducing a new Lyapunov-Krasovskii functional, new stability criteria are derived in terms of linear matrix inequalities (LMIs). Two numerical examples are given to show the superiority of the proposed method.