• Title/Summary/Keyword: Time delay system

Search Result 2,726, Processing Time 0.03 seconds

Stability Condition for Discrete Interval Time-Varying System with Unstructured Uncertainty and Time-Varying Delay Time (비구조화된 불확실성과 시변 지연시간을 갖는 이산 시변 구간 시스템의 안정조건)

  • Hyung-seok Han
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.504-509
    • /
    • 2022
  • In this paper, we deal with the stability condition of linear time-varying interval discrete systems with time-varying delays and unstructured uncertainty. For the time-varying interval discrete system which has interval matrix as its system matrices, time-varying delay time within some interval value and unstructured uncertainty which can include non-linearity and be expressed by only its magnitude, the stability condition is proposed. Compared with the previous result derived by using a upper bound solution of the Lyapunov equation, the new result is derived by the form of simple inequality based on Lyapunov stability condition and has the advantage of being more effective in checking stability. Furthermore, the proposed condition is very comprehensive, powerful and inclusive the previously published conditions of various linear discrete systems, and can be expressed by the terms of magnitudes of the time-varying delay time and uncertainty, and bounds of interval matrices. The superiority of the new condition is shown in the derivation, and the usefulness and advantage of the proposed condition are examined through numerical example.

Guaranteed Cost Control for Uncertain Time-Delay Systems with nonlinear Perturbations via Delayed Feedback (지연귀환을 통한 비선형 섭동이 존재하는 불확실 시간지연 시스템의 성능보장 제어)

  • Park, Ju-Hyun;Kwon, Oh-Min
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.6
    • /
    • pp.581-588
    • /
    • 2007
  • In this paper, we propose a delayed feedback guaranteed cost controller design method for linear time-delay systems with norm-bounded parameter uncertainties and nonlinear perturbations. A quadratic cost function is considered as the performance measure for the given system. Based on the Lyapunov method, an LMI optimization problem is formulated to design a controller such that the closed-loop cost function value is not more than a specified upper bound for all admissible system uncertainties and nonlinear perturbations. Numerical example show the effectiveness of the proposed method.

Modeling and Simulation of the Cardiovascular System Using Baroreflex Control Model of the Heart Activity (심활성도 압반사 제어 모델을 이용한 심혈관시스템 모델링 및 시뮬레이션)

  • Choi Byeong Cheol;Jeong Do Un;Shon Jung Man;Yae Su Yung;Kim Ho Jong;Lee Hyun Cheol;Kim Yun Jin;Jung Dong keun;Yi Sang Hun;Jeon Gye Rok
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.565-573
    • /
    • 2004
  • In this paper, we proposed a heart activity control model for simulation of the aortic sinus baroreceptor, which was the most representative baroreceptor sensing the variance of pressure in the cardiovascular system. And then, the heart activity control model composed electric circuit model of the cardiovascular system with baroreflex control and time delay sub-model to observe the effect of time delay in heart period and stroke volume under the regulation of baroreflex in the aortic sinus. The mechanism of time delay in the heart activity baroreflex control model is as follows. A control function is conduct sensing pressure information in the aortic sinus baroreceptor to transmit the efferent nerve through central nervous system. As simulation results of the proposed model, we observed three patterns of the cardiovascular system variability by the time delay. First of all, if the time delay over 2.5 second, aortic pressure and stroke volume and heart rate was observed non-periodically and irregularly. However, if the time delay from 0.1 second to 0.25 second, the regular oscillation was observed. And then, if time delay under 0.1 second, then heart rate and aortic pressure-heart rate trajectory were maintained in stable state.

A Single DOF Magnetic Levitation System using Time Delay Control and Reduced-Order Observer

  • Park, Jung-Soo;Baek, Yoon-Su
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1643-1651
    • /
    • 2002
  • Magnetic levitation systems are required to have a large operating range in many applications. As one method to solve this problem, Time Delay Control (TDC) is applied to a single-axis magnetic levitation system in this paper A reduced-order observer is utilized to estimate states excluding measurable states in the control law. The system consists of a square air-core solenoid and a circular permanent magnet attached on a plastic ball. Theoretical magnetic forces of the system are obtained on the basis of the location of the magnet around the solenoid. The magnetic levitation force is obtained by the experiment, and then compared with the theoretical one. As the results of the control experiments, the nonlinear controller (TDC : 1-2 ㎜) has a larger operating range than the linear controller (PD control : 1-1.4 ㎜), and is superior to linear. control in the robustness to the modeling uncertainty and the performance of the disturbance rejection.

Measurement of Autoignition Temperature of o-Xylene+n-pentanol System (오토자일렌과 노말펜탄올 계의 최소자연발화온도 측정)

  • Ha, Dong-Myeong;Lee, Sung-Jin
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.4 s.76
    • /
    • pp.66-72
    • /
    • 2006
  • An accurate knowledge of the AITs(autoignition temperatures) is important in developing appropriate prevention and control measures in industrial fire protection. The measurement of AITs are dependent upon many factors, namely initial temperature, pressure, vessel size, fuel/air stoichiometry, catalyst, concentration of vapor, ignition delay time. The values of the AITs used process safety are normally the lowest reported, to provide the greatest margin of sefety. This study measured the AITs of o-xylene+n-pentanol system from ignition delay time by using ASTM E659-78 apparatus. The experimental AITs of o-xylene and n-pentanol were $480^{\circ}C\;and\;285^{\circ}C$, respectively. The experiment AITs of o-xylene+n-pentanol system were a good agreement with the calculated AITs by the proposed equations with a few A.A.D.(average absolute deviation).

Guaranteed Cost Control for a Class of Uncertain Delay Systems with Actuator Failures Based on Switching Method

  • Wang, Rui;Zhao, Jun
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.492-500
    • /
    • 2007
  • This paper focuses on the problem of guaranteed cost control for a class of uncertain linear delay systems with actuator failures. When actuators suffer "serious failure" the never failed actuators can not stabilize the system, based on switching strategy of average dwell time method, under the condition that activation time ratio between the system without actuator failure and the system with actuator failures is not less than a specified constant, a sufficient condition for exponential stability and weighted guaranteed cost performance are developed in terms of linear matrix inequalities (LMIs). Finally, as an example, a river pollution control problem illustrates the effectiveness of the proposed approach.

Nonlinear Networked Control Systems with Random Nature using Neural Approach and Dynamic Bayesian Networks

  • Cho, Hyun-Cheol;Lee, Kwon-Soon
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.3
    • /
    • pp.444-452
    • /
    • 2008
  • We propose an intelligent predictive control approach for a nonlinear networked control system (NCS) with time-varying delay and random observation. The control is given by the sum of a nominal control and a corrective control. The nominal control is determined analytically using a linearized system model with fixed time delay. The corrective control is generated online by a neural network optimizer. A Markov chain (MC) dynamic Bayesian network (DBN) predicts the dynamics of the stochastic system online to allow predictive control design. We apply our proposed method to a satellite attitude control system and evaluate its control performance through computer simulation.

Back-up Control of Truck-Trailer Vehicles with Practical Constraints: Computing Time Delay and Quantization

  • Kim, Youngouk;Park, Jinho;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.6
    • /
    • pp.391-402
    • /
    • 2015
  • In this paper, we present implementation of backward movement control of truck-trailer vehicles using a fuzzy mode-based control scheme considering practical constraints and computational overhead. We propose a fuzzy feedback controller where output is predicted with the delay of a unit sampling period. Analysis and design of the proposed controller is very easy, because it is synchronized with sampling time. Stability analysis is also possible when quantization exists in the implementation of fuzzy control architectures, and we show that if the trivial solution of the fuzzy control system without quantization is asymptotically stable, then the solutions of the fuzzy control system with quantization are uniformly ultimately bounded. Experimental results using a toy truck show that the proposed control system outperforms a conventional system.

Guaranteed Cost Control of Parameter Uncertain Systems with Time Delay

  • Kim, Jong-Hae
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.1
    • /
    • pp.19-23
    • /
    • 2000
  • In this paper, we deal with the problem of designing guaranteed cost state feedback controller for the generalized time-varying delay systems with delayed state and control input. The generalized time delay system problems solved on the basis of LMI(linear matrix inequality) technique considering time-varying delays. The sufficient condition for the existence of controller and guaranteed cost state feedback controller design methods are presented. Also, using some changes of variables and Schur complements, the obtained sufficient condition can be reformulated as LMI forms in terms of transformed variables. Therefore, all solutions of LMIs, guaranteed cost controller gain, and guaranteed cost are obtained at the same time. The proposed controller design method can be extended into the problem of robust guaranteed cost controller design method for parameter uncertain systems with time-varying delays easily.

  • PDF

Robust H${\infty}$Fuzzy Control of Nonlinear Systems with Time-Varying Delay via Static Output Feedback

  • Kim, Taek-Ryong;Park, Jin-Bae;Joo, Young-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1486-1491
    • /
    • 2005
  • In this paper, a robust H${\infty}$ stabilization problem to a uncertain fuzzy systems with time-varying delay via static output feedback is investigated. The Takagi-Sugeno (T-S) fuzzy model is employed to represent uncertain nonlinear systems with time-varying delayed state, which is a continuous-time or discrete-time system. Using a single Lyapunov function, the globally asymptotic stability and disturbance attenuation of the closed-loop fuzzy control system are discussed. Sufficient conditions for the existence of robust H${\infty}$controllers are given in terms of linear matrix inequalities.

  • PDF