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Nonlinear Networked Control Systems with Random Nature using
Neural Approach and Dynamic Bayesian Networks

Hyun Cheol Cho and Kwon Soon Lee*

Abstract: We propose an intelligent predictive control approach for a nonlinear networked
control system (NCS) with time-varying delay and random observation. The control is given by
the sum of a nominal control and a corrective control. The nominal control is determined
analytically using a linearized system model with fixed time delay. The corrective control is
generated online by a neural network optimizer. A Markov chain (MC) dynamic Bayesian
network (DBN) predicts the dynamics of the stochastic system online to allow predictive control
design. We apply our proposed method to a satellite attitude control system and evaluate its

control performance through computer simulation.

Keywords: Dynamic Bayesian network, NCS, neural network, random time-delay.

1. INTRODUCTION

An NCS 1is currently popular in the industry
because many dynamic systems progressively involve
a complicated structure and are controlled by remote
controllers via communication networks. Such a
network controlled framework has multiple
economical and technological advantages. However, a
challenging issue in a NCS is the effect of the time-
varying delay between the remote controller and the
targeted plant. Such delay is caused by system
complexity and the use of a randomly varying
communication network. Time delay often degrades
control performance and can even cause instability.
Thus, it is necessary to consider the effect of the delay
on control design for a NCS.

Recently, engineers have actively investigated
control solutions for such a problem [1-3]. Recent
publications also include tutorial articles that
introduce the control and stability analysis for linear
time-invariant NCSs. The simplest design approach is
to use an augmented model to represent the effect of
the time delay [2,3]. In [4], the authors presented a
control design based on an augmented discrete-time
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system model for periodic delay and extended it to
non-identical delay in [5]. In [6,7], a queuing theory
approach was applied to construct a state predictor
and the state probability was calculated using a First-
Input-First-Output (FIFO) model. In [8-10], the
authors applied optimal stochastic control, robust
control, and system perturbation theory, respectively,
to overcome the effects of the delay in an NCS. In
[11], sampling time scheduling where the sampling
interval is arbitrarily changed online was used to
maintain a stable NCS. This concept was extensively
utilized for  multi-dimensional NCSs  [12].
Proportional-Integral (PI) control was designed for
time-delayed systems in [13], and its parameters were
adaptively updated to cope with time-varying delay.

More recent research has considered more complex
NCSs and more sophisticated control methodologies.
In [14], the authors studied a Lyapunov-based control
for a nonlinear MIMO NCS in which the system
model included a fixed time delay and the controller
law was derived based on Lyapunov stability theory.
State feedback control was utilized for a linear
continuous NCS 1in [15,16]. Finally, in [17] the
authors used stochastic design of a random NCS
whose two time delays (sensor and actuator) were
estimated using two homogeneous MCs.

In most studies to date, the authors usually dealt
with NCSs characterized by linear time-invariant,
fixed time delay, and deterministic behavior. Although
the proposed methodologies were successfully
implemented in simulation experiments, real-time
control errors are unavoidable in practice due to the
nonlinear and random nature of NCSs. A recent
survey [1] recognized the need to change the
controller design framework to obtain more practical
adaptive controller designs. However, practical NCS
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Fig. 1. Networked control systems.

dynamics are difficult to analytically model. Moreover,
changes in the system environment are not completely
predictable and cannot be easily accounted for in the
design procedure.

This paper contributes an intelligent control
approach for a nonlinear NCS with time-varying delay
and random observation, which is hardly dealt with to
date. The control is given by the sum of a nominal
control and a corrective control. The nominal control
1s determined analytically using a linearized system
model with fixed time delay. The corrective control is
generated online by a neural network iteratively
trained using data from the actual nonlinear stochastic
system. The neural network comprises a nonlinear
Infinite Impulse Response (IIR) module whose input
vector includes: the current and time-lagged errors,
the recurrent outputs, and the constant bias, whose
output is the control vector. In addition, we construct a
DBN model to predict the dynamics of the stochastic
system online for allowing predictive control design.
Thus, a predict signal generated from the DBN is
forwarded to the neural network tuner as input
information. We apply our proposed method to a
satellite attitude control with nonlinear stochastic
dynamics and Poisson distributed time delay.
Simulation experiments demonstrate the superiority of
the proposed neural approach to traditional NCS
controllers.

This paper is organized as follows: In Section 2, we
describe a nonlinear stochastic NCS with random time
delay. We propose a control design for the system in
Section 3. DBN modeling and neural predictive
control are derived in Section 4 and 5 respectively. A
simulation example is provided in Section 6 and
conclusions are given in Section 7.

2. NONLINEAR STOCHASTIC NCS

We consider a discrete nonlinear NCS with random
time delay and stochastic observations. A general
mathematical expression for single-input-single-
output (SISO) systems with control and observation
time delay z,, 7, 1s given by

x(k +1)= f(x(k),u(k —7,),k)
(k) = g(x(k),w,k) (1)
C(k) — y(k o z-y):'

where xeR" is the state vector, y, R are the

ok i u(k) — utk-1,) yk)
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Fig. 2. Typical control systems with time delays.

output and measured output, respectively, f and g are
continuous nonlinear functions of all their arguments,

and o is a scalar Gaussian noise process. Clearly, the
system outputs are non-Gaussian due to their
nonlinearity. The system error, e(k) = r(k) — ((k),
propagated to the controller, is obtained by comparing
the observation ¢ with the reference value ». A block
diagram of a typical nonlinear NCS is indicated in Fig.
2. Here, we assume two bounded random delays z,
and 7, with compact support

Iy € [Tu,min > Ty, max ]a z-y € [Ty,min ’ Ty,max ]9 (2)

where system stability is obtained within the bounds.
Applying an expectation operator E(z,) and E(17,), we
alternatively express (2) as

t,=T,—-At,, ry:Ty—Ary, (3)
where
Tu = E(Tu)a Ty = E(Ty )5 (4)

At, =E(r,)-1,, AT, =E(1,)-1,.

The expected values of the delays T, and 7, in (4) can
be estimated from experimental data and used to
design a nominal controller. However, the
perturbations in the time delays require a more
complex design for satisfactory NCS performance.

3. CONTROLLER DESIGN

We express the nonlinear state and output of (1) as
the sum of a nominal state and a nonlinear
perturbation, i.€.,

{x(k )= x (k+ D)+ Ak +1) .

y(k)=y" (k) + Av(k),

where x is the state of a nominal model and y’k is the

nominal output, while Ax and Ay represent nonlinear
perturbations. The nominal state x corresponds to

fixed time delay 7, in (4) and the perturbed state Ax

results from the random time delay Az, Thus, the
state equation is rewritten as

x(k+1)=F(&x ,u (k=T,),k)+Af (e u(k —7,), (6)

where F' is a linear function of all its arguments and
AF is a nonlinear perturbation. Similarly, for the
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output model of (5), we have
* %
yiky=G(x ,w ,k)+ Ag(x,w,k), (7)

where G is linear and Ag 1s nonlinear. We also
separate the observation into a nominal observation £
"(k) and a nonlinear perturbation A¢ (k) as

Sk =< (k) + AL (). ®)
Based on the observation equation (1), we have
Sy =y (k—7,)+ Mk -1)). ©)

In terms of the expected delay and the random
perturbation of (4), we have the observation equation

C(k)=y (k—T, +Az,)+ Ak —1,)

. (10)
=y (k=T,)+Av(k—1).

In summary, a nonlinear NCS model 1s separated into
a nominal linear model with fixed time delay and a
nonlinear stochastic perturbation including random
time delay. Correspondingly, we adopt a two-step
control design procedure. We firstly design a state
feedback control for the nominal model and then
adaptively correct its control online using a neural
network. Hence, the control vector 1s the sum of the

nominal and corrective control vectors as illustrated in
Fig. 3.

3.1. Linear control for nominal time delay model
We use the deterministic nominal model

X" (k+1) = Ax (k) + Bu(k T,

v (k) =Cx (k) (11)
()= (k-Ty)

A

to design a state feedback control based on pole
placement for two cases 7, =0, T,# 0, and 7, = 0, T,
= 0, where 4 is a n-by-n nominal state matrix, B is a
n-by-1 control matrix, and C is a n-by-1 output matrix.
Then, we determine the appropriate control parameter
by seeking a common region for the two solutions.

3.1.1 Control delay only (7, =0, 7,,# 0)
For 7, =0in (11), we have

{x*(k+1):Ax*(k)+Bu(k 1) (12)

" (k)= Cx" (k).
An augmented state-space model [18] is expressed as

{XC (k+1)=T1.X_(k)+T .u(k) (13

G (k) =2.X (k)

where the augmented state vector is

* | T
X0 =[x ") 50 ) - x @)

c S:R(’HT”)

and the corresponding matrices are given by

A B 0,1, 1)

I, =07 1y Oz,-1pa Liz,-1)
_len 0

01,1y

c iR(n+Tu W (n+T,) ,

r =[o...0 1}%9{“‘%),

s =lc o - o]einlx(””u).

We have the linear state feedback control law
u(k)=-K_X_ (k) (14)
with the gain matrix

Ix(n+T,
K. :|:Kc Kentl ]'('c,n+_7;/li|eER (s )' (15)

Substituting (14) into (13), we have the new state
matrix

I1° =11, -T' K,
! B AT ] |
1) (16)
=%y Ygpa ]
L K
and its characteristic equation
zl —TI° =0. (17)

We select a stable control gain K, satisfying [z| < 1
with appropriate closed-loop dynamics.

3.1.2 Output delay only (7, # 0, T,,= 0)
Similarly, for 7, = 0, we have
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x5 (k +1) = Ax” (k) + Bu(k)
y (k)=CX" (k) (18)
SR =y (k-1,)

N

and its augmented model [18] is given by

{Xo(k+l)=l_[0(k)+l"ou(k) (19)

¢ (k) =2,X, (k),

where similarly we have a new state vector

¥ T
X,0=[x"0 50w - xp @]

E ER(rHTy) ’

4 Oz, 1) O

I, =|C Oz, O

LO(Ty—l)xn Ir

g Oz, -1 |

E ER(nJrTy x(n+T,) ,

o]Te R,

Ix(n+T,) .

I,=|B 0 -

—

> =00 - Ol]eiﬂ

Likewise, we have the state feedback control
Uo (k) = _K()XO (k)a (20)

where a control gain matrix
. Ix(rn+T,,)
K, —-[K‘O Kome KO,MyJem Y.21)

Finally, a new state matrix including the control
parameter is given by

M° =11, -I' K,

A_BKO _BKO,H+1 _BKo,n+2
0 0
| o 1 0
0 1
0 0 0 0
_BKo,n-i-Ty—l _BKo,n+Ty ”"
0 0
0 0
0 0
1 0o |

Similarly, we determine K, for stability based on its
characteristic equation

2l —TI¢ =0. (23)

3.1.3 Solution of control for a nominal time delay

From each control solution of the state feedback
above, we finally select an appropriate control gain
which satisfies both models by seeking a common
region for the two solutions, 1.e.,

K e{K,nK,}, (24)

where K 1s the control matrix applied to the nominal
system with both control and observation delays.

3.2. Correction of the control gain by neural network
In practice, control design using a nominal system
model becomes suboptimal due to model
perturbations. We solve this problem using a neural
network approach. The key idea is to optimally
determine a corrective control through learning using
a set of »n neural networks as shown in Fig. 4. Each
network has the recurrent structure shown in Fig. 5
where the output signal is feedback to an input neuron.
This neural model i1s IIR framework appropriate to
construct a stable controller due to its feedback
realization [18]. The input vector of each network
commonly includes the system error, the time-lagged
error, and a constant bias. The output is the corrective
control. In Fig. 5, each network output is expressed as

where we let 7:=T, =T, for simplicity in oftline

design procedure. We also have the network weight
matrices,

w; = [Wigsrwy s v =[vins Vi | (26)
the input vector,

T olk) - ek =]
E [e( ), el | 1)] : 27
Q, =[&(k = 1), &k -m)]

1 s+—»| Neural
Network ——» K
e(k) —
Neural
Network F—— K
N

Fig. 4. A neural module for an optimizer.
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Fig. 5. Structure of a nonlinear IIR network.

and the bias b,. For simplicity, the activation function
of the ith network is

¢ = o tanh(a5 %), o a5 > 0. (28)

The control objective is to minimize the system error
with respect to the network parameters 6, = elements
of {w; v; b;}. To derive a learning rule of the
parameters, we first define an objective function

.1 1
J = argmin—e? (k) = —(r(k) - £ (b)) (29)
6, 2 2
Applying  steepest-descent  optimization,  the
adjustment rule of the parameter vectors are given by
o .
t9l-(k+1)=t9f(k)—77—£, i=1,-,n+T, (30)

l

where 77¢€(0,1) is the learning rate. Using the chain
rule, we expand the partial derivative in (30) as

oJ _0oJ Oe 0¢ Ou Ok; OK;

- — . (31)
068, 0Oe 04 Ou Ok; Ok; 06,
Solving each differential term in (31), we have
aJ 0 OK;
=g . ) 32
06, ou 06, 52)
where
o [HOE. 76 =w
5‘5— =1¢4;()Q;, if 6 =v (33)
-0, e =b,
and the system Jacobian is approximated [19] as
0 kKY—-¢ (k-1
¢ _¢)=¢ k=1 G

ou  u(k)-uk-1)

Finally, the adjustment rules of the network

parameters in (30) are respectively obtained as

~ 2(k)-z(k=D) ,,
wf(k+1)—wl-(k)me[u(k)_u(k_l)}zs():1, 55)
i=1-.n+T,
_ 2(0)-z(k-1)) .
v;-(k+1)—vz-<k)+ne(u(k)_u(k_l)}¢()42, 56
i=1---,n+T,
_ 2(0) -2k -1 ..
b(k +1) = b(k) +”e[u(k) T 1)};5 0. 37
4. DBN MODELING

We model the random output signal in (1) using a
DBN to design a predictive control system. In Section
2, we observe that the output is a non-Gaussian
random variable. DBN is particularly suited to
modeling stochastic systems with non-Gaussian
statistics [20]. In this paper, we adopt the DBN
modeling scheme of [21] with a discrete MC model.
As a first step in DBN modeling, we discretize the
amplitude of the analog observation in (1) as

¢ (k) e {1 (h), Ga(k), -+, Sy (K- (38)

The corresponding probability is given by
p(& (k) € {p(1(K)), p(S2(K)),++, p(Cw (KD} (39)

subject to the constraint

N
2 P&k =1. (40)
i=1

We represent the random observation using the MC
model of Fig. 6. The parameters a; of this model are
the conditional probabilities of transition from the
observation at k-1 to the observation at k, defined by

a; (k)= p(gi(k)|¢;(k=1)), &,j=L---,N.  (41)

These parameters are constrained by
N
D> oa;(k)=1, j=1--,N. (42)
i=1

This DBN parameter must be optimally estimated
online based on the observation sequence via DBN
learning to stochastically model the system dynamics
[20]. We adopt the estimation algorithm of [21] for
our DBN modeling. We briefly describe the online
parameter estimation algorithm of [21]. First, the
DBN parameter in (41) is alternatively defined as

a;(k)=am;(k), i,j=1-N, (43)
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where m; 1s average likelihood wvalues. This is
expressed in recursive from as

m,-j(k):[ﬁg—l]mg (k—l){ﬂnj (k).

I,j=1-N,

(44)

which is sequentially updated selecting y; according
to the following rule

L) =i &k —1)=j
%_j(k):{; ifc(k)=i&c(k-1)=j (45)

otherwise,

where ¢>0. Applying a sliding window to emphasize
more recent data, we rewrite (44) as

N, -1 1
m;-,-(k)—( - )mgw—l){y—)yg(k}, 6

w

ia].: 1,"‘,N,

where N,, > 0.

3. PREDICTIVE CONTROL BY DBN

We have the posterior probability vector of the
DBN model in Fig. 6.

p(s (k) = A(k) p({(k —1)), (47)

where the time-varying stochastic matrix 4=[a;], i,j =
1,---, N, 1s updated through the estimation procedure of
Section 4. The state probability is recursively
computed by multiplying the stochastic matrix by the
prior probability vector. Consequently, if the initial
probability vector p(z(ky)) where ko<k is known, we
obtain the new probability of the state from recursive
calculation based on observation data. Moreover,
assuming A(k+i)=A(k) where i > 0, by recursively
applying the posterior probability, we obtain an i-
ahead predictive state probability at current time %, i.e.,

p&k+i))= A" p(Lk-1)), i>0. (48)

The elements of 4 converge asymptotically to a
stationary distribution in (48) and the posterior
probability becomes fixed [20]. We compute future

states by seeking the maximum probability in (48),
that 1s,

s =max { p(&y (k +1), p($y(k+1),-, p(&y (k+0)},
(49)

al-j(k)

Fig. 6. A DBN model of the random observation.

ep(k) K (k) ul(k)

Time-delayed
Nf:u{al — Contrller [—— imemcetaye
optimizer nonlinear systems

S(ky=ylh-1.)
>

2 (403)

DBN

Predictor model

Fig. 7. Predictive control with DBN model.

where i > 0 and s € [1,N]. The predicted observation
f from (49) is used to predict the error

e, (ky=r—¢(k+i). (50)

The error estimate is essential for enhancing NCS
control performance [1,2]. Fig. 7 shows a block

diagram of our proposed predictive control systems
using a DBN model for the NCS.

6. NUMERICAL EXAMPLE

We apply our proposed control method to satellite
attitude control. A satellite system must have the
correct attitude for proper orientation with respect to
the Earth. This is remotely controlled, receiving a
control signal and sending its state to a control center
on the Earth. We refer to the dynamic equations for
satellite attitude in [22], but modify them for the
purpose of our simulation to

x, (k +1) = x, (k) + T,x, (k) + ¢ cos(k) + 0.5T2u(k)
Xy (k +1) = x5 (k) + cyx (k)xp (k) + Tu(k)

y(k) = x (k) + e3 (K)o’ (K),

A

(51

where the states x; and x, are the angle and the
angular velocity of a satellite, 7, 1s the sampling

period, ¢, and ¢, are constant, ¢; 1s a random

variable, @ is Gaussian noise, and # is control input.
The first and second equations of (51) represent
dynamics of the angle and the angular velocity of a
satellite system respectively, which are composed of
linear and nonlinear terms. An output signal in the
third term of (51) is deteriorated by non-Gaussian

noise. We select two fixed time delays in (4) 7, and

T, identically equal to two. Thus, the nominal model
with fixed time delays is given by

e+ | 117 5 k) {O'STSju(k-z)
nk+D| L0 1] xk) T ’

X (k) |
=10 ,
») [ ]_x;(k)_ (52)
¢(ky=ylk -2).
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Our control objective is to maintain zero angle, 1.e., r=
0 under given initial state condition which is not zero.
Based on the design guideline of Section 3, we select
the nominal control gain K =1[5.2, 1.75, 2.1, 0.9]. We
then design a neural optimizer for the nonlinear
system model with time-varying delays.

Case 1: First, we consider deterministic observa-
tions, 1.e., o(k)=0 in (51). Since a control gain K 1is
a 1x4 matrix, four neural networks are constructed in
(27) along with each input vector

[E(k) ;)]

= [le(k)e(k — 1) e(k - 2) &, (k- D& (k- 2)T,
i=1,-,4.

Each initial condition for the network is randomly
chosen with uniform distribution in [-0.5, 0.5] and the
learning rate is 0.75. The neural network iteratively
learns until it reaches satisfactory performance for
varying initial values of the networks. This learning is
accomplished from offline experiments in which
simulation data are generated from the numerical
setup in (52). As stated in Section 3.2, an objective
function used in this learning procedure is linearly
composed of a system error which is the deviation
between a reference value and a system output.
Training data of the neural networks is the system
error made from comparing a system output to a
reference value. We select a neural network with the
smallest error function through iterative learning
routes with 5000 epochs. Fig. 8(a) shows angle
trajectory of a satellite system with an initial vector

x(0) =11 O]T for added neural corrective control and

for linear control only. The results clearly demonstrate
that the corrective control effectively enhances control
performance. For linear control we observe large
oscillations that corrective control successfully
eliminates. Thus, settling time in case of neural
control is much faster than linear control. A small
ripple in the steady-state region of the neural control
is present due to the nonlinearity of the system model.
Likewise, the control input in Fig. 8(b) is clearly more
efficient for neural control. Initially, linear control
uses excessive input force which causes large
oscillations, whereas the corrective neural control
reduces the average control power.

Case 2: Next, we construct a neural predictive
control using the nonlinear stochastic model of (51).
For DBN modeling of the random observation, we
first quantize the continuous observation signal as

(k) ={|¢ (k)| >0.2) },
&H(k)={|¢ (k)| €[0.2,0.4) |, (53)
&) ={|¢ (k)| €[0.4,0.6) |,

&) ={|¢ (k)| €[0.6, 0.8) |,
¢s(k)y=4|¢ (k)| 20.8}.

In the output equation of (51), c3(k) is uniformly
distributed random variable and @(k) is Gaussian

zero-mean with randomly changed variance. We test
our predictive control for the system model and
compare it with the non-predictive neural control
design in Case 1 with the same simulation
environment. Simulation results for these two controls
are illustrated in Fig. 9. There are large deviations in
non-predictive control due to non-stationary random
noise in the output model, but the output trajectory for
predictive control is approximately zero in the steady
state. These results demonstrate the success of our
neural predictive control. The corresponding input
depicted in Fig. 9(b) shows that neural predictive
control energy is significantly smaller than that for
non-predictive control.

| ——— Linear control only

0.8'5' Neural corrective control |-
T i
s
o
= P—::"‘q
=
Ly
-0.8; l ! | [ S S RO PR
0 2 4 6 8 10 12 14 16 18 20
time [sec]
(a) System response.
A ‘ Linear control only !
4 ||_| | | Neural corrective control [
| !
3 -
2 L
1"
2 0
£
AH
-2

|
3 .
_4 !I -
_5 I : H . 1 . | ! | :
0 2 4 8 8 10 12 14 16 18 20
time {sec]
(b) Control input.

Fig. 8. Simulation result of Case 1.
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Fig. 9. Simulation result of Case 2.

7. CONCLUSION

We propose a neural control approach for nonlinear
stochastic networked systems with time-varying delay.
A recurrent neural module is constructed as a gain
optimizer for state feedback control. We demonstrate
the reliable performance of our control approach by
applying it to a nonlinear satellite attitude system
through simulation. Simulation results demonstrate
that neural corrected control is better than just linear
control and neural predictive control outperforms
neural corrected control. However, adaptive control
requires more data to allow DBN modeling and in
some applications corrective neural control may be
preferable. In future work, adaptive sampling for

stabilization and more complex NCS structures will
be examined.
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