Recently attempts to we the syllable as the recognition unit to enhance performance in continuous speech recognition hate been reported. However, syllables are worse in their trainability than phones and the former have a disadvantage in that contort-dependent modeling is difficult across the syllable boundary since the number of models is much larger for syllables than for phones. In this paper, we propose a method to enhance the trainability for the syllables in Korean and phoneme-context dependent syllable modeling across the syllable boundary. An experiment in which the proposed method is applied to word recognition shows average 46.23% error reduction in comparison with the common syllable modeling. The right phone dependent syllable model showed 16.7% error reduction compared with a triphone model.
A Phonetic Tied-Mixture (PTM) model has been proposed as a way of efficient decoding in large vocabulary continuous speech recognition systems (LVCSR). It has been reported that PTM model shows better performance in decoding than triphones by sharing a set of mixture components among states of the same topological location[5]. In this paper we propose a Phonetic Tied-Mixture Syllable (PTMS) model which extends PTM technique up to syllables. The proposed PTMS model shows 13% enhancement in decoding speed than PTM. In spite of difference in context dependent modeling (PTM : cross-word context dependent modeling, PTMS : word-internal left-phone dependent modeling), the proposed model shows just less than 1% degradation in word accuracy than PTM with the same beam width. With a different beam width, it shows better word accuracy than in PTM at the same or higher speed.
This study investigated how syllable-level variables such as syllable frequency, syllable (i.e. vowel) type, presence of final consonants (i.e. batchim) and syllable position influence naming of both words and pseudo-words. The results of the linear mixed-effects model analysis showed that, for words, naming time decreased as the frequency of the first syllable increased, and when the first syllable had a final consonant. Additionally, words were named more accurately when they had vertical vowels compared to horizontal vowels. For pseudo-words, naming time decreased and accuracy rate increased as the frequency of the first or the second syllable increased. Furthermore, pseudo-words were named more accurately when they had vertical vowels compared to horizontal vowels. These results suggest that while the frequency of the second syllable had differential effects between words and pseudo-words, the frequency of the first syllable and the syllable type had consistent effects for both words and pseudo-words. The implications of this study were discussed concerning visual word recognition processing.
Journal of the Korea Institute of Information and Communication Engineering
/
v.9
no.8
/
pp.1625-1631
/
2005
This paper describes an optimization of a language model and an acoustic model that improve the ability of speech recognition with Korean nit digit. Recognition errors of the language model are decreasing by analysis of the grammatical feature of korean unit digits, and then is made up of fsn-node with a disyllable. Acoustic model make use of demi-syllable pair to decrease recognition errors by inaccuracy division of a phone, a syllable because of a monosyllable, a short pronunciation and an articulation. we have used the k-means clustering algorithm with the transformed successive state splining in feature level for the efficient modelling of the feature of recognition unit . As a result of experimentations, $10.5\%$ recognition rate is raised in the case of the proposed language model. The demi-syllable pair with an acoustic model increased $12.5\%$ recognition rate and $1.5\%$ recognition rate is improved in transformed successive state splitting.
In this paper, we describe an algorithm for transliterated foreign word extraction in Korean language. In the proposed method we reformulate the transliterated foreign word extraction problem as a syllable-tagging problem such that each syllable is tagged with a transliterated foreign syllable tag or a pure Korean syllable tag. Syllable sequences of Korean strings ale modeled by Hidden Markov Model whose state represents a character with binary marking to indicate whether the character forms a Korean word or not. The proposed method extracts a transliterated foreign word with high recall rate and precision rate. Moreover, our method shows good performance even with small-sized training corpora.
In this paper we propose a new mixed method of LDA and tri-tone model to predict Korean prosodic break indices(PBI) for a given utterance. PBI can be used as an important cue of syntactic discontinuity in continuous speech recognition(CSR). The model consists of three steps. At the first step, PBI was predicted with the information of syllable and pause duration through the linear discriminant analysis (LDA) method. At the second step, syllable tone information was used to estimate PBI. In this step we used vector quantization (VQ) for coding the syllable tones and PBI is estimated by tri-tone model. In the last step, two PBI predictors were integrated by a weight factor. The proposed method was tested on 200 literal style spoken sentences. The experimental results showed 72% accuracy.
Journal of the Korean Institute of Telematics and Electronics
/
v.27
no.1
/
pp.143-150
/
1990
In this paper, a rule-based method for improving the intelligibility of synthetic speech is proposed. A 12-pole linear prediction coding method is used to model syllable speech signals. A syllable concatenation rule for pause and frame rejection between syllables is developed to improve the naturalness of the synthetic speech. In addition, phonoligical structure transform rule and prosody rule are applied to the synthetic speech by LPC. The illustrative results demonstrate that the synthetic speech obtained by applying these rules has better naturalness than the synthetic speech by LPC.
KIPS Transactions on Software and Data Engineering
/
v.7
no.4
/
pp.121-128
/
2018
A Korean morphological analyzer adopts sequence-to-sequence (seq2seq) model, which can generate an output sequence of different length from an input. In general, a seq2seq based Korean morphological analyzer takes a syllable-unit based sequence as an input, and output a syllable-unit based sequence. Syllable-based morphological analysis has the advantage that unknown words can be easily handled, but has the disadvantages that morpheme-based information is ignored. In this paper, we propose a reranking model as a post-processor of seq2seq model that can improve the accuracy of morphological analysis. The seq2seq based morphological analyzer can generate K results by using a beam-search method. The reranking model exploits morpheme-unit embedding information as well as n-gram of morphemes in order to reorder K results. The experimental results show that the reranking model can improve 1.17% F1 score comparing with the original seq2seq model.
Kim, Sang-Do;Park, Seong-Bae;Park, Se-Young;Lee, Sang-Jo;Kim, Kweon-Yang
Journal of the Korean Institute of Intelligent Systems
/
v.20
no.2
/
pp.202-207
/
2010
In this paper, we present an automatic sentiment classification method for on-line movie reviews that do not contain explicit sentiment rating scores. For the sentiment polarity classification, positive or negative, we use a Support Vector Machine classifier based on syllable kernel that is an extended model of string kernel. We give some experimental results which show that proposed syllable kernel model can be effectively used in sentiment classification tasks for on-line movie reviews that usually contain a lot of grammatical errors such as spacing or spelling errors.
In this study, we verified the feasibility of a Korean morphological analyzer that uses a pre-analyzed Eojeol dictionary and syllable-based probabilistic model. For the verification, MACH and KLT2000, Korean morphological analyzers, were cloned with a pre-analyzed eojeol dictionary and syllable-based probabilistic model. The analysis results were compared between the cloned morphological analyzer, MACH, and KLT2000. The 10 million Eojeol Sejong corpus was segmented into 10 sets for cross-validation. The 10-fold cross-validated precision and recall for cloned MACH and KLT2000 were 97.16%, 98.31% and 96.80%, 99.03%, respectively. Analysis speed of a cloned MACH was 308,000 Eojeols per second, and the speed of a cloned KLT2000 was 436,000 Eojeols per second. The experimental results indicated that a Korean morphological analyzer that uses a pre-analyzed eojeol dictionary and syllable-based probabilistic model could be used in practical applications.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.