• Title/Summary/Keyword: Stirling polynomials

Search Result 31, Processing Time 0.022 seconds

IDENTITIES INVOLVING THE DEGENERATE GENERALIZED (p, q)-POLY-BERNOULLI NUMBERS AND POLYNOMIALS

  • JUNG, N.S.
    • Journal of applied mathematics & informatics
    • /
    • v.38 no.5_6
    • /
    • pp.601-609
    • /
    • 2020
  • In this paper, we introduce degenerate generalized poly-Bernoulli numbers and polynomials with (p, q)-logarithm function. We find some identities that are concerned with the Stirling numbers of second kind and derive symmetric identities by using generalized falling factorial sum.

HIGHER ORDER APOSTOL-TYPE POLY-GENOCCHI POLYNOMIALS WITH PARAMETERS a, b AND c

  • Corcino, Cristina B.;Corcino, Roberto B.
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.3
    • /
    • pp.423-445
    • /
    • 2021
  • In this paper, a new form of poly-Genocchi polynomials is defined by means of polylogarithm, namely, the Apostol-type poly-Genocchi polynomials of higher order with parameters a, b and c. Several properties of these polynomials are established including some recurrence relations and explicit formulas, which are used to express these higher order Apostol-type poly-Genocchi polynomials in terms of Stirling numbers of the second kind, Apostol-type Bernoulli and Frobenius polynomials of higher order. Moreover, certain differential identity is obtained that leads this new form of poly-Genocchi polynomials to be classified as Appell polynomials and, consequently, draw more properties using some theorems on Appell polynomials. Furthermore, a symmetrized generalization of this new form of poly-Genocchi polynomials that possesses a double generating function is introduced. Finally, the type 2 Apostolpoly-Genocchi polynomials with parameters a, b and c are defined using the concept of polyexponential function and several identities are derived, two of which show the connections of these polynomials with Stirling numbers of the first kind and the type 2 Apostol-type poly-Bernoulli polynomials.

A NOTE ON q-ANALOGUE OF POLY-BERNOULLI NUMBERS AND POLYNOMIALS

  • Hwang, Kyung Won;Nam, Bo Ryeong;Jung, Nam-Soon
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.5_6
    • /
    • pp.611-621
    • /
    • 2017
  • In this paper, we define a q-analogue of the poly-Bernoulli numbers and polynomials which is generalization of the poly Bernoulli numbers and polynomials including q-polylogarithm function. We also give the relations between generalized poly-Bernoulli polynomials. We derive some relations that are connected with the Stirling numbers of second kind. By using special functions, we investigate some symmetric identities involving q-poly-Bernoulli polynomials.

AN EXTENSION OF GENERALIZED EULER POLYNOMIALS OF THE SECOND KIND

  • Kim, Y.H.;Jung, H.Y.;Ryoo, C.S.
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.3_4
    • /
    • pp.465-474
    • /
    • 2014
  • Many mathematicians have studied various relations beween Euler number $E_n$, Bernoulli number $B_n$ and Genocchi number $G_n$ (see [1-18]). They have found numerous important applications in number theory. Howard, T.Agoh, S.-H.Rim have studied Genocchi numbers, Bernoulli numbers, Euler numbers and polynomials of these numbers [1,5,9,15]. T.Kim, M.Cenkci, C.S.Ryoo, L. Jang have studied the q-extension of Euler and Genocchi numbers and polynomials [6,8,10,11,14,17]. In this paper, our aim is introducing and investigating an extension term of generalized Euler polynomials. We also obtain some identities and relations involving the Euler numbers and the Euler polynomials, the Genocchi numbers and Genocchi polynomials.

A NEW FAMILY OF FUBINI TYPE NUMBERS AND POLYNOMIALS ASSOCIATED WITH APOSTOL-BERNOULLI NUMBERS AND POLYNOMIALS

  • Kilar, Neslihan;Simsek, Yilmaz
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.5
    • /
    • pp.1605-1621
    • /
    • 2017
  • The purpose of this paper is to construct a new family of the special numbers which are related to the Fubini type numbers and the other well-known special numbers such as the Apostol-Bernoulli numbers, the Frobenius-Euler numbers and the Stirling numbers. We investigate some fundamental properties of these numbers and polynomials. By using generating functions and their functional equations, we derive various formulas and relations related to these numbers and polynomials. In order to compute the values of these numbers and polynomials, we give their recurrence relations. We give combinatorial sums including the Fubini type numbers and the others. Moreover, we give remarks and observation on these numbers and polynomials.

ON p-ADIC INTEGRAL FOR GENERALIZED DEGENERATE HERMITE-BERNOULLI POLYNOMIALS ATTACHED TO χ OF HIGHER ORDER

  • Khan, Waseem Ahmad;Haroon, Hiba
    • Honam Mathematical Journal
    • /
    • v.41 no.1
    • /
    • pp.117-133
    • /
    • 2019
  • In the current investigation, we obtain the generating function for Hermite-based degenerate Bernoulli polynomials attached to ${\chi}$ of higher order using p-adic methods over the ring of integers. Useful identities, formulae and relations with well known families of polynomials and numbers including the Bernoulli numbers, Daehee numbers and the Stirling numbers are established. We also give identities of symmetry and additive property for Hermite-based generalized degenerate Bernoulli polynomials attached to ${\chi}$ of higher order. Results are supported by remarks and corollaries.

Bernoulli and Euler Polynomials in Two Variables

  • Claudio Pita-Ruiz
    • Kyungpook Mathematical Journal
    • /
    • v.64 no.1
    • /
    • pp.133-159
    • /
    • 2024
  • In a previous work we studied generalized Stirling numbers of the second kind S(a2,b2,p2)a1,b1 (p1, k), where a1, a2, b1, b2 are given complex numbers, a1, a2 ≠ 0, and p1, p2 are non-negative integers given. In this work we use these generalized Stirling numbers to define Bernoulli polynomials in two variables Bp1,p2 (x1, x2), and Euler polynomials in two variables Ep1p2 (x1, x2). By using results for S(1,x2,p2)1,x1 (p1, k), we obtain generalizations, to the bivariate case, of some well-known properties from the standard case, as addition formulas, difference equations and sums of powers. We obtain some identities for bivariate Bernoulli and Euler polynomials, and some generalizations, to the bivariate case, of several known identities for Bernoulli and Euler numbers and polynomials of the standard case.

UNIFIED APOSTOL-KOROBOV TYPE POLYNOMIALS AND RELATED POLYNOMIALS

  • Kurt, Burak
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.2
    • /
    • pp.315-326
    • /
    • 2021
  • Korobov type polynomials are introduced and extensively investigated many mathematicians ([1, 8-10, 12-14]). In this work, we define unified Apostol Korobov type polynomials and give some recurrences relations for these polynomials. Further, we consider the q-poly Korobov polynomials and the q-poly-Korobov type Changhee polynomials. We give some explicit relations and identities above mentioned functions.

NOTES ON THE PARAMETRIC POLY-TANGENT POLYNOMIALS

  • KURT, BURAK
    • Journal of applied mathematics & informatics
    • /
    • v.38 no.3_4
    • /
    • pp.301-309
    • /
    • 2020
  • Recently, M. Masjed-Jamai et al. in ([6]-[7]) and Srivastava et al. in ([15]-[16]) considered the parametric type of the Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials. They proved some theorems and gave some identities and relations for these polynomials. In this work, we define the parametric poly-tangent numbers and polynomials. We give some relations and identities for the parametric poly-tangent polynomials.