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HIGHER ORDER APOSTOL-TYPE POLY-GENOCCHI
POLYNOMIALS WITH PARAMETERS a,b AND c

CRISTINA B. CORCINO AND ROBERTO B. CORCINO

ABSTRACT. In this paper, a new form of poly-Genocchi polynomials is de-
fined by means of polylogarithm, namely, the Apostol-type poly-Genocchi
polynomials of higher order with parameters a, b and c. Several prop-
erties of these polynomials are established including some recurrence re-
lations and explicit formulas, which are used to express these higher or-
der Apostol-type poly-Genocchi polynomials in terms of Stirling numbers
of the second kind, Apostol-type Bernoulli and Frobenius polynomials
of higher order. Moreover, certain differential identity is obtained that
leads this new form of poly-Genocchi polynomials to be classified as Ap-
pell polynomials and, consequently, draw more properties using some
theorems on Appell polynomials. Furthermore, a symmetrized general-
ization of this new form of poly-Genocchi polynomials that possesses a
double generating function is introduced. Finally, the type 2 Apostol-
poly-Genocchi polynomials with parameters a, b and ¢ are defined using
the concept of polyexponential function and several identities are derived,
two of which show the connections of these polynomials with Stirling
numbers of the first kind and the type 2 Apostol-type poly-Bernoulli
polynomials.

1. Introduction

There are several variations of Genocchi numbers that appeared in the lit-
erature. These include the Genocchi polynomials and Genocchi polynomials of
higher order, which are respectively defined by
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and Apostol-Genocchi polynomials, and Apostol-Genocchi polynomials of
higher order, which are respectively defined by
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(see [1,2,6,7,17,18,22]). Other interesting variations of Genocchi polynomials
can be found in the papers [11, 14, 16, 29], which contain remarkable results
that can possibly be the basis in generating identities for a higher level gener-
alization of Genocchi polynomials. It is also interesting to explore some other
known polynomials (e.g. [4,12,13,15,26]), which are closely related to Genocchi
polynomials.

Another variation of Genocchi numbers, also known as poly-Genocchi poly-
nomials, was introduced by Kim et al. [19] using the concept of kth polyloga-
rithm, denoted by Lig(z), which is given by
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The poly-Genocchi polynomials were defined as follows:
> n . t
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Kim et al. [19] also defined a modified poly-Genocchi polynomials, denoted by
Gglk%(x), as follows:
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and obtained several properties of these polynomials. Note that, when k = 1,
Equations (6) and (7) give the Genocchi polynomials in (1). That is,

GV (z) = GL)(x) = Gul2).

On the other hand, Kurt [23] defined two forms of generalized poly-Genocchi
polynomials with parameters a, b, and ¢, by
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which were motivated by the definitions (6) and (7), respectively. Kurt [23]
also derived several properties parallel to those of poly-Genocchi polynomials
by Kim et al. [19]. Note that, when = 0, (6) reduces to
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where G%k) are called the poly-Genocchi numbers.

In this paper, a new variation of poly-Genocchi polynomials with parame-
ters a, b and ¢, namely, the Apostol-type poly-Genocchi polynomials of higher
order with parameters a, b and ¢, will be investigated. Sections 2 and 3 provide
the definition of this new variation of poly-Genocchi polynomials, some special
cases and their relations with some Genocchi-type polynomials. Section 4 de-
votes its discussion on some identities that link the Apostol-type poly-Genocchi
polynomials of higher order with parameters a, b and ¢ to Appell polynomials.
Section 5 focuses on the connections of these higher order Apostol-type polyno-
mials to Stirling numbers of the second kind and different variations of higher
order Bernoulli-type polynomials. Section 6 demonstrates the symmetrized
generalization of these higher order Apostol-type polynomials. Section 7 in-
troduces type 2 Apostol-poly-Genocchi polynomials with parameters a,b and
¢ using the concept of polyexponential function [21]. Section 8 contains the
conclusion of the paper.

2. Definition

Here, a new variation of poly-Genocchi polynomials, the Apostol-Type poly-
Genocchi polynomials of higher order with parameters a b and ¢ will be intro-
duced.

Definition. The Apostol-type poly-Genocchi polynomials of higher order with
parameters a, b and ¢, denoted by gff"*)(x; A, a,b, c), are defined as follows:
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where G (z;\,a,b,¢) = gk’l)(x;/\,a,b, ¢) denotes the Apostol-type poly-

Genocchi polynomials with parameters a,b and c.

The following are special cases of the Apostol-type poly-Genocchi polyno-
mials of higher order with parameters a,b and c:
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1. When ¢ = e, Equation (11) reduces to

n . _ —2t @
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For convenience, g,(Lk’a)(x;/\,a,b) will be used to denote Gi"®) (z; A, a,b,e).
That is,
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2. When k =1, (11) yields
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where the polynomials gff)(x; A a,b,c) = (1e) (x; A\, a,b,c) will be called the
Apostol-type Genocchi polynomials of higher order with parameters a, b and
c¢. When o =1, (15) yields
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where the polynomials g,(f) (x; A\, a, b, ¢) will be called the Apostol-type Genocchi
polynomials with parameters a b and c.
3. When a = 1,b = e, (14) will reduce to

k a) " le(l - 67215) “ xt
We will use the notations
G (2 X) = P (1N, 1,e) and GF (23 0) = GF) (20,1, e)

and call these polynomials Apostol-type poly-Genocchi polynomials of higher
order and Apostol-type poly-Genocchi polynomials, respectively.
4. When A =1, (17) gives
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which is the higher order version of Equation (7), i.e., the higher order version
of the modified poly-Genocchi polynomials of Kim et al. [19]. We will use
G(k O“)( ) to denote gl (z;1).

5. Using the fact that

Lii(2) = —=In(1 — 2),
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when k=1, (17) gives

oo m ot a
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and when A =1, (19) gives

e} m 2 «
E (L) (. R xt
n:Ogn (m’l)n' a <1 +et> c

where &) (z; \) and g§he) (z; 1) are exactly the Genocchi polynomials el (x)
and Apostol-Genocchi polynomials ch)(a:?)\) of higher order in (4) and (2),
respectively.

3. Relations with some Genocchi-type polynomials

In this section, some relations for Q'nk’a) (z; A, a,b,c) expressed in terms of
some Genocchi-type polynomials will be established.

Theorem 3.1. The Apostol-type poly-Genocchi polynomials of higher order
with parameters a,b, c satisfy the recurrence relation

n
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Proof. Equation (11) can be written as
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Comparing the coefficients of % completes the proof of the theorem. O

Consider a special case of (14) by taking x = 0. This gives

> " Lip(1 — (ab)=2H)\
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We use the notation g (k, a)( a,b) = Qi(k’a) (0; A, a,b) and call them the Apostol-
type poly-Genocchi numbers of higher order with parameters a and b. The fol-
lowing theorem contains an identity that expresses gn’“"‘) (z; A, a,b,c) as poly-
nomial in z, which involves gf’“*“)(/\, a, b) as coefficients.

Theorem 3.2. The Apostol-type poly-Genocchi polynomials of higher order

with parameters a,b, c satisfy the relation

n
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Proof. Equation (11) can be written as
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Comparing the coefficients of +1, we obtain the desired result. O

The next identity gives the relation between Gl (z; \,a,b,c) and Gl O‘)( i A).

Theorem 3.3. The Apostol-type poly-Genocchi polynomials of higher order
with parameters a,b, c satisfy the relation

1 1
(23) G (w; M a,b,¢) = (Ina+Inb) G < rlnctalna >

Ina+Inbd
Proof. Using (11), we have
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Comparing the coefficients of we obtain the desired result. ([

4. Classification as Appell polynomials

The following theorem contains a differential identity that can be used to
classify Apostol-type poly-Genocchi polynomials as Appell polynomials [24,27,
28].
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Theorem 4.1. The Apostol-type poly-Genocchi polynomials with parameters
a, b, c satisfy the relation

(24) gfl’i‘f (z: X, a,b,¢) = (n+1)(Inc)GF) (2 X, a, b, ¢).

Proof. Applymg the first derivative to Equation (11), we have

= n ; _ —2t\\ ¢
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Comparing the coefficients of L7, we obtain the desired result. (I

i

Remark 4.2. When ¢ = e, Equation (24) reduces to
(25) G (@i b) = (DG4 (w30, 0,0),

which is one of the properties for the polynomial to be classified as Appell
polynomial.

Being classified as Appell polynomials, the generalized poly-Genocchi poly-
; (k) (.. . . : .
nomials Gy’ (z; a, b) must possess the following properties

G (22X, a,b) = Z <”) i,
2

=0
GF) (w; A, a,b) = (Z |D> o
i=0

for some scalar ¢; # 0. It is then necessary to find the sequence {c,}. Using
(22) with c =€, ¢; = Q.(k’a)(/\, a,b) which implies the following corollary.

K2

Corollary 4.3. The Apostol-type poly-Genocchi polynomials with parameters
a, b, c satisfy the formula

o0 ~(k,)
(ki) (3 _ Zw AP
G (z; M\, a,b) = (i_o A D' | «".
For example, when n = 3,
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k,« k,a
_ GV Oab) 5 GV Nab)
0! 1!
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2! 3!

= G5 (A a,b)a® + 36" (A, a, b)a?
+ 3657\, a,b)z + G5 (A, a, b).

+ D33

The next corollary immediately follows from Equation (25) and the character-
ization of Appell polynomials [24,27,28].

Corollary 4.4. The Apostol-type poly-Genocchi polynomials with parameters
a, b, ¢ satisfy the addition formula

(26) Gl (@ +yihab) = @ " (@5 A @, by
=0

Taking = 0 in formula (26) and using the fact QT(Lk)(O; A a,b) = ,(Lk)()\, a, b),
Corollary 4.4 gives formula (22) in Theorem 3.2 with ¢ = e.
An extension of this addition formula can be derived as follows:
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Comparing the coefficients of % gives the following theorem.

Theorem 4.5. The Apostol-type poly-Genocchi polynomials of higher order
with parameters a, b and c satisfy the addition formula

(27) gﬁl’“‘) (x+y; A\ a,b,c) = E (n) (In c)"iigi(k’a)(x; A a,b, c)y”fi.
i
i=0

By taking « = 0, Equation (27) exactly gives (22).

5. Connections with some special numbers and polynomials

In this section, some connections of the higher order Apostol-type poly-

Genocchi polynomials Gy, (k) (z; A\, a, b, ¢) with other well-known special numbers
and polynomials will be established.



HIGHER ORDER APOSTOL-TYPE POLY-GENOCCHI POLYNOMIALS 431

To introduce the first connection, we define an Apostol-type poly-Bernoulli
polynomials of higher order with parameters a, b and ¢ as follows:

L'Lk(l — e_t) ¢ ot > (ky) (. z"
(28) ( ot 1 e’ = nE:O By (25 \) E
When a = 1, (28) reduces to
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where B,gk)(x; A) = B&k’l)(x; A) denotes the Apostol-type poly-Bernoulli poly-
nomials with parameters a, b and ¢. When k = 1, (28) gives

3 “ Tt . (1,&) (. ﬁ
(30) (Aet_1> e T;OB" (23 ),

where Bg’a)(m; A) = B,ga)(ac; A), the Apostol-Bernoulli polynomials of higher
order in [25]. Also, when A = 1, (28) will give

le(l B e_t) “ xt - (k,a) (5. "
(31) <6t—1 e = ;Bn (ff,l)m,
where B (x;1) = B (x), the higher order version of poly-Bernoulli poly-
nomials of Bayad and Hamahata [3,20]. When o = 1, (31) reduces to the

definition of poly-Bernoulli numbers and polynomials [8-10, 20].
Now, we are ready to introduce the following theorem.

Theorem 5.1. The Apostol-type poly-Genocchi polynomials of higher order
with parameters a,b, c satisfy the relation

Gy (23X, 0,b,¢)

_ Z <O,[)(1)j)\°‘j8,(f’a) <(a —j)lnb+zlnc+ (2a j)lna;v)
= \J 2(Ina + Inb)

(32) x 2"(Ina + Ind)".

In particular, the Apostol-type poly-Genocchi polynomials with parameters a, b, ¢
satisfy the relation
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Proof. Rewrite Equation (11) as

n

o0 N t
> G (w5, a,b, )

n=0



432 C. CORCINO AND R. CORCINO

le xtlnc
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Applying the Binomial Theorem yields
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Using the definition of Apostol-type poly-Bernoulli polynomials in (28), we

> G (@A a,b,0)—
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Comparing the coefficients of %n, yields (32).
The next theorem contains an identity that relates the Apostol-type poly-
Genocchi polynomials of higher order with parameters a,b and ¢ to Stirling

numbers of the second kind { } defined in [5] by

SIS

n=m
Here, it is important to note that if (co,c1,...,¢j,...) is any sequence of num-
bers and [ is a positive integer, then
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(35) —Z{ > H%<m,n2,...7 )}fﬂ

nitngt+--+nag=ni=1
(see [5]).

Theorem 5.2. The Apostol-type poly-Genocchi polynomials of higher order
with parameters a,b and c satisfy the relation

(1) 3 -y wsge ((Fhetala
(36) G, (z; A, a,b,¢) ;(g)(lnaﬁ-lnb) gnj< P A d;,

where
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Proof. Now, (11) can be written as
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Using (15), we get

0o N o 0o . m oo t‘]
ng,(«bk7 )(m;)\vaﬂbac)a = (Zgﬁz )(x;)\,a7b,c)n!> chi )
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where 1
j (21nab)jm!{J—:_1}
=3 (—nm i

=2 (1) G+ 1)(m + 1)F-1

m=0
e
Note that, using (35), (Z;io ¢ 3—],) can be expressed as

[0}
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t =t
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where

dp = Z f[ (nl,ng,... na>.

ni+ns+t-+nag=ni

It follows that

Zg(kam)\abcn i i(]) éa)J(x)\abc)d %T:

n=0 7=0

Comparing the coefficients and using Equation (23) complete the proof of the
theorem. (]

Remark 5.3. When o =1, d; = ¢;.
The identities in the following theorem are derived using the relation in (13).

Theorem 5.4. The Apostol-type poly-Genocchi polynomials of higher order

,(Lk’a)(:c; A, a,b, ¢) with parameters a, b, ¢ satisfy the following explicit formulas:

(37) GE (2 X\, a,b,c) = Z Z {751} (7) c) g(k a)( mline\, a,b)(z)™),

m=0[l=m

38) G (x;7,a,b,¢) i . { }( )(lnc) G (N, a,b)(x)m,

(39) G (w; A, a,b) Z nzl (7) {l S} EIT_Z)) G" ) (X a,b)BE) (zlne; N),

=0 m=0

(40) G (2: X\, a,b) = i (1@21)5 i <S>(* )*IGE ) (5 A, b)ES (5 1),

where ()™ =z(z+1)--- (z+n—1),(x), = 2(x—1)--- (x —n+1), the rising
and falling factorials of x of degree n and F,SS) (z; p), the Frobenius polynomials
of higher order [25], defined by

(=) -

m=0
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Proof. The proof of relations (37)-(39) makes use of the definition of Stirling
numbers of the second kind in (34). Using the generalized Binomial Theorem,
(11) may be written as

o0

> G (250, a,b, o
n
n=0
Lip(1 = (ab)*)\" ¢~ (z+m—1 !
_ Lig(1 = (ab)™™) 1_ ncym
() S0 o
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m=0 n=01=0 .
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m=01l=m

Comparing coefficients completes the proof of (37). To prove (38), (11) we
write as

o0 N tn
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(x) tlnc _ m Zk 2t) @
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o) 0o n a tnfl
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= i{ié{ }( ) c)lg,(f’?)()\,a,b)(x)m}:;.

Again, comparing coefficients completes the proof of (38). Using (30), (11)
may be expressed as

o N tn
DG @ N abe)

n=0
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o) (e (o'
|

n+s oo
<§+s>!> (ZBﬁs%mnc;A ) (zw D) a by,) :

n=0

n+s)| tts - (n t"\ sl

() (¢ 1n ¢ (k) L

" S)!> (Z > (M)fenangtnnan ) 2
XL (145t - =t sl
_ () gk s!
(ZZ{ S }(l+8)' m )Bm (IIHC, )‘)gnflfm()\7a’b) (n_l)l ts'

S (145 Us! m—1 s ( n! "

_ (ZZ S () B G O W)
n—l I+ (nn;l) N i
0(7){ } Ry B e NG 00 00b) ) T

n=0 \Il=0 m=

Comparing the coefficients of % gives (39). To prove relation (40), express (11)
as
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)

1 > Lix(1 — (ab)~
_ § (s) k
- pe nzan xlncu ( < a=t 4+ bt )
1 S S) oo ) (oo} ka
= . (=)™ (g ()(xlncu) ><E GF) (z: X, a, b) >
(=)= \J 4 —

n

> ( )Q“”‘ (@i A, a,b)F (wIn u))

m=0
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I
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=
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w
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R
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0
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|

<
(]2
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n

) n n s ) N "
- Z ( ‘ (1 _nl)s . <s-)(_N)S_Jgr(z]inm)(ff§)\»avb)an)(l"lnC; #)) o

Comparing the coefficients of glves (40). O
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6. Symmetrized generalization

Definition. For m,n > 0, the symmetrized generalization of multi poly-
Genocchi polynomials with parameters a, b and c is defined as follows:
(41)

m (—k,a) A b 1 Lal m—k
(m,a) A, a,b, m n (957 , @,y ,C) yinc+ alna .
S (1' Y; A, a, C) kz% (k‘) (1na+1nb)n Ina+1nb

The following theorem contains the double generating function for
S (@, y; A, a,b,c).

Theorem 6.1. For n,m > 0, we have

ylnctalna zlnctalna
6( Thatinb )”e( Thatinbd )tth

0o oo
1™
42 ST (z,y; N, a, b, ¢)— — = :
( ) Z Z n ($7y7 ,a, ’C)n! m (1+)\6t)(€2t —62t+u+6u)

n=0m=0

Proof.
oo 00 ma) mom
> D 8 xy,)\abc)'m'
n=0m=0

m

_iiig ka)x/\abc) ylnec+ alna m_kti' u
B (Ina +Inb)» Ina+1nbd n! kl(m — k)!

_iii &ka JC)\abc) (y]nc+a1na>m—kﬂlw
n=0 k=0 m=k lna+1nb) thL‘i’hlb n' k'(mfk)'

oy G mhabe it o (ynetadna

- 4~ (ma+b)  nlkl <=\ ha+nd T

(yllnc:(fh;a ZOO ZOO T(L k.a) )\ a,b, C) t"u
:6 na n

el
== (Ina+Inb)» n! k!

Applying (23) yields

o0 o0 tn m

Z Z Sr(zm’a)(m’y; A,aa ba C)ilu*|

n=0m=0 n.m
n ,k
B 1,1ﬁ;+an1nn (—k,a) zlnc+alna LIL
- et Zzg Ina+Inb A nl k!l

k=0n=0
Now, using (17), we obtain

E E ng)a)(xﬂy’ Aaavbv C)il |
n.m
n=0m=0
oo —2t\ &
Inctalna zl 1 L — €
= e(ylna+1nb )ue(ﬂﬁﬁ?ﬂ?“)t E Mui
pors 1+ Xet k!
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(ylnc+alna) (zlnc+a1na
e

na n u na n k
_ 1 +Inb 1 +Inb Z L 72t)u7
14 Xet i k'

Employing the definition of polylogarithm ylelds

nz:omz:oS(ma) x,y; A\, a, b, c) nq::

ylnctalna a:lnc+alna _
el Juel( 1—e 260

Inaflnb )Y Inaflnb Z Z u
1+ et k!

k=0 m=0
(e Juo (et )t
S (L)1~ (1 —em2)en))
(e Ju o (e )t o2t
(1 + )\Gt)(€2t — e2ttu 6”) : O
The Apostol-type poly-Genocchi polynomials discussed above will be re-

ferred to as type 1 Apostol-poly-Genocchi polynomials. Type 2 of these poly-
nomials are introduced in the next section.

7. Type 2 higher order Apostol-poly-Genocchi polynomials

Another variation of Genocchi polynomials is defined using the polyexpo-
nential function [21],
o0 Zm
43 = —eeee
(43) ek (2) mZ: (o D

Note that when k = 1, e1(z) = e* — 1. Hence, if z = log(1 + 2t),
e1(z) = e1(log(1 + 2t)) = 18142 _ 1 = 9,

Definition. The type 2 Apostol-poly-Genocchi polynomials of higher order

with parameters a,b and ¢, denoted by g,(f%(x; A, a,b,c), are defined as follows:

« " ex(log(1 + 2tlnab))\* | (InX)? + 72
(44) (k, ) _ [k xt ]
g Gpo (z37,a,b,¢) p P ot < Mna+ b

The following are special cases of foéa)(x; A a,b,c):

1. When z = 0, we use g,(féa)()\,a, b) to denote gﬁl’f;”) (0; A\, a,b, c), the type
2 Apostol—poly—Genocchi numbers with parameters a,b. That is,

(k) () t" _ (ex(log(l + 2tnab))\*
(45) ;}g (A a,b)— = ( s

2. When a = 1,b = ¢ = e, (44) yields

(k) t" er(log(1+2t)\“
(46) nzog (@; )‘)ﬁ <1_|_>\€t> e,
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where the polynomials g( ) (z;\) = Q(k (x50, 1,e,e) are called the type 2
Apostol-poly-Genocchi polynomlals
3. When k =1, (44) gives

> (@), . t" _ 2tlnab \“ ot
(47) ;gng(aﬁ,k,a,b,c)a = <a—t—|—)\bt 'y

where the polynomials gff;)(a:, A a,b,c) = gﬁl{’;) (x; A\, a,b, c) are called the type
2 Apostol-Genocchi polynomials with parameters a,b and ¢, which are related
to the type 1 Apostol-Genocchi polynomials with parameters a,b and ¢ as
follows:

(1,a) “Mab
G5 (w3 h a,b,¢) = 2 (@Aa,0,0)

Inab
4. When a = 1,b = c = e, (47) yields
(La) (). 2\
(48) Zg (w,)\,l,e,e)mf (1—&—)\@t> e,

n=0

where the polynomials gy(:éa)(m; A lee) = ( (:c \) are the type 2 Apostol-
Genocchi polynomials in (2). Furthermore, when a = 1,

> 1) t" 2t
1 . _ xt
(49) 3:0 gn,? (.13, )‘) nl - 1+ et €y

where G, o(z; ) = QS%(QB, A), the type 2 Apostol-Genocchi polynomials.
Now rewrite (44) as follows:

c- (ko) A b ﬁ — ek(IOg(l +2tln ab)) “ ztlnc
nzzogn,2 (:C’ )a’7 7C) n' a,t(l + )\(ab)t) €

_zinerainay gy (ep(log(l+ 2tInab))
=¢ 1 4 \etlnab

1 1 "

Ina+1Inb n!’
n= 0
and comparing the coeflicients yield the following theorem.
Theorem 7.1. The type 2 Apostol-poly-Genocchi polynomials with parameters

a,b and c satisfy the relation

a o 1 1
50) 08 wh o) = ot mprgly) ((FRELAMEL)

Ina+1Inbd
When &k =1, (50) reduces to the following relation

rlnc+alna >

(@) (.. n=igle)
(51) gn72(I,)\7a,b, C) (1na—|—lnb) g < lna+1nb
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The next theorem contains an identity that relates the type 2 Apostol-poly-
Genocchi polynomials of higher order with parameters a,b and ¢ to Stirling

numbers of the first kind [ } defined by

Theorem 7.2. The type 2 Apostol-poly-Genocchi polynomials of higher order
with parameters a,b and c satisfy the relation

(ko) . _ n e 2(a) xlnc—i—alna. .
(53) G5 (s N a,b,0) ;(J)anamb) G, (Tetane ),

where

(21n ab)? {j * 1]

b= ¥ - (nn n) “"d"j:i<j+1><mfl+>kl—l'

ni+ngs+---+nq=ji=1 m=0

Proof. Applying the definition of polyexponential function (43), (44) may be
written as

n

200: k,a t
g”(h? )(x;)\,a,b, c)ﬁ
n=0

B et = (log(1 + 2tInab))™ \
(a4 Abt)e <Z (m —1)lm* >

m=1
B ot i (log(1 + 2t Inab))™*! :
~ (amt+ Abt)e = m!(m + 1)F

c*t i 1 log(1 + 2t Inab))™*! :
© (a4 bt = (m+ 1R (m+1)!

This can further be written, using (52), as follows:

n

t
Zg"”‘ (z; )\,a,b,c)j
n

B > > j ] (2tlnab)?
_(_t+)\bt Z m+1 Z [m+1] j

|
O =m+1 J:

V“} a
2tInab N — m+ 1 (2tlnab)j
_xt

‘ ( ) Z; G+ '

— ¢ ]
+ b wr'le 1)(m+ 1)k= J!
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Applying (47) yields

koo " o " = ¢
(54) Zg( )(x;A,a,b,c)n! (Zg( )(:v)\a,b,c)n!> S|

where
d94+1
j (21nab)7[j+ }
1T G D mr )

Note that, using (35), Equation (54) can be expressed as

> k, tn e n n tn
S ol wnanal =38 Y (Mol e bad ¢ o

n=0 n=0 | j=0

d; = Z H (nl,ng, -,”a)

nit+no+-+ng=ji=1

This immediately gives (53) by comparing the coefficients and using Equation
(50). O

where

The next theorem shows the relationship between the type 2 Apostol-poly-
Genocchi polynomials of higher order with parameters a, b and ¢ and the type
2 Apostol-poly-Bernoulli polynomials defined as

er(log(1+1)) (ka - z"
(55) (Aet — Z B, -
These polynomials and those in (28) are generalizations of Bernoulli-type poly-

nomials.

Theorem 7.3. The type 2 Apostol-poly-Genocchi polynomials of higher order
with parameters a,b, c satisfy the relation

(56)  GU)(x; N a,b,¢)

_ 12— (ko) ((@=j)Inb+zlnc+ (20 —j)lna o]
Z() AT B < 2(Ina + Inb) A (In.ab)".

Proof. Rewrite Equation (44) as

n

oo k. "
Z g7(112a)(x; )‘a a, b7 C)E

n=0
B (ek(logl—i—%lnab ) stlne

b
B ( k(log(1 + 2t1Inab))

t\a a:t Inc
a—2t — )\bt )\b
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_ ek(log(1—|—2tlnab)) “ —tlna tlnbya _ ztlnec 2talna
- (2 ) (et

o ek(log(l +2t1nab)) “ t(—Ina+(zlnc/a)+2Ina) t(lnb+(zlnc/a)+21Ina) «
- ( —(A2¢2tIn(ab) — 1) (e —Ae ) :

Applying the Binomial Theorem yields

n

Zg“”‘ Aab o)
n

_ ek(log(1+2tlnab)) ‘< @ a—j jt(lnat+(zlnc/a)) (a—j)t(lnb+(zlnc/a)+21na)
- ( —(A2¢2¢In(ab) — 1) Z j (=A)* e €

Jj=0

20‘: < ) 1) A0 (ck(log(l +2t lnab))>ae[((afj)lnb+a(a:1nC/a)+(2a7j)1na)/21nab](2tlnab).
\2e2tIn(adb) _ 1
j=0

Using the definition of type 2 Apostol-poly-Bernoulli polynomials of higher
order in (55), we have

o "
Zg(" ) (z; )\,a,b,c)—'
n!

_ Jira-i (ko) ((@=F)Inb+2xzlnc+ 2a—j)lna 4 (] Wt
]z;( ) A {28”2 ( 2(Ina +Inbd) X (Inab) n!

n=0
_ Z Z 1)ixe- ]B(ka) (a—j)Inb+zlnc+ (2a—j)lna A2 27 (In ab)" tn
. J 2(Ina + Inb) n!’
n= Jj=0
Comparing the coefficients of %n, yields (56). O

Remark 7.4. Tt is left to the reader to prove the following identities. The proof
can be done following the proof of the corollary responding identities in Sections
3, 4 and 5 for type 1 Apostol-poly-Genocchi polynomials of higher order with
parameters a, b and c:

M:

G (@3 ab,¢) = ( ) (Ine)" 'G5 (A, a, b)a"

=0
n

gr(féa)(x-i-l A, a,b,c :Z(r) (Inc) g(krg(x A a,bc),

r=0

d a o
T Onia (@ A a,b,e) = (n+ 1)(Ine)G, 57 (2 A, abc),
X ’ )

hE

«@ n n—i Pret n—i
G837 (@ +y; hab,¢) = (Z (Ine)" 'G5 (@3 A, a,b, )y,

n,2 .
i=0
gékga)(xy)\,a»@ c) = Z {751} (7) (lnc)lgfﬁ’%(—mln e a,b)(z)™),

m=0[=m
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g,(L]féa)(x;)\,a,& c) = Z Z {nll} (7) (hrlc)lgflk;?;()\,aJ))(ac)m7
m=0Il=m

n n—l

g,(féa) (x; A, a,b) = Z ( ){l—l—s}( )g(ka (A, a,b)BE) (z1ne; \),

= ()

m=0
G5 (@5 A a,b) = > G (’” Z(S-)< 1) 7G5 (i, a, b)) ().

m:O 7=0 J

8. Conclusion

Using polylogarithm Apostol-type polynomials of higher order with parame-
ters a, b and ¢ and a variation of poly-Genocchi polynomials, called the Apostol-
type poly-Genocchi polynomials of higher order, also known as type 1 Apostol-
poly-Genocchi polynomials of higher order were introduced. Some interesting
properties and identities of these polynomials parallel to those of the poly-Euler
polynomials and poly-Bernoulli polynomials were proved. Using a differential
identity, the type 1 Apostol-poly-Genocchi polynomials were classified as Ap-
pell polynomials, which, consequently, gave some interesting relations. More-
over, these type 1 Apostol-poly-Genocchi polynomials of higher order were
expressed in terms of Stirling numbers of the second kind and Apostol-type
poly-Bernoulli polynomials of higher order. Furthermore, the symmetrized
generalization of the type 1 Apostol-poly-Genocchi polynomials of higher or-
der was introduced and a double generating function was established. Type 2
Apostol-poly-Genocchi polynomials of higher order with parameters a, b and ¢
were also defined. Several identities were established, two of which showed the
connections of these polynomials with Stirling numbers of the first kind and the
type 2 Apostol-type poly-Bernoulli polynomials. One may try to investigate
the two types of Apostol-poly-Bernoulli polynomials of higher order defined in
(28) and (55), by establishing more properties and extending them to a more
general form by adding three more parameters a, b and c.
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