DOI QR코드

DOI QR Code

Bernoulli and Euler Polynomials in Two Variables

  • Received : 2022.08.11
  • Accepted : 2022.11.08
  • Published : 2024.03.31

Abstract

In a previous work we studied generalized Stirling numbers of the second kind S(a2,b2,p2)a1,b1 (p1, k), where a1, a2, b1, b2 are given complex numbers, a1, a2 ≠ 0, and p1, p2 are non-negative integers given. In this work we use these generalized Stirling numbers to define Bernoulli polynomials in two variables Bp1,p2 (x1, x2), and Euler polynomials in two variables Ep1p2 (x1, x2). By using results for S(1,x2,p2)1,x1 (p1, k), we obtain generalizations, to the bivariate case, of some well-known properties from the standard case, as addition formulas, difference equations and sums of powers. We obtain some identities for bivariate Bernoulli and Euler polynomials, and some generalizations, to the bivariate case, of several known identities for Bernoulli and Euler numbers and polynomials of the standard case.

Keywords

Acknowledgement

I thank the anonymous referee for his/her careful reading of the original version of this work. The many details and observations he/she pointed out, certainly contributed to present this final version.

References

  1. L. Carlitz, Problem 795, Math. Mag., 44(1971), 107.
  2. G.-S. Cheon, A Note on the Bernoulli and Euler polynomials, Appl. Math. Lett., 16(3)(2003), 365-368. https://doi.org/10.1016/S0893-9659(03)80058-7
  3. L. Comtet, Advanced Combinatorics, D. Reidel Publishing Co., Dordrecht, 1974, xi+343 pp.
  4. K. Dilcher and C. Vignat, General convolution identities for Bernoulli and Euler polynomials, J. Math. Anal. Appl., 435(2)(2016), 1478-1498. https://doi.org/10.1016/j.jmaa.2015.11.006
  5. H. W. Gould, Explicit formulas for Bernoulli numbers, Amer. Math. Monthly, 79(1972), 44-51. https://doi.org/10.1080/00029890.1972.11992980
  6. B. N. Guo and F. Qi, Explicit formulae for computing Euler polynomials in terms of Stirling numbers of the second kind, J. Comput. Appl. Math., 272(2014), 251-257. https://doi.org/10.1016/j.cam.2014.05.018
  7. B. C. Kellner, Identities between polynomials related to Stirling and harmonic numbers, Integers, 14(2014), Paper No. A54, 22 pp.
  8. T. Komatsu, B. K. Patel and C. Pita-Ruiz, Several formulas for Bernoulli numbers and polynomials, Adv. Math. Commun., 17(3)(2023), 522-535. https://doi.org/10.3934/amc.2021006
  9. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl and M. A. McClain, eds., NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/, Release 1.1.3 of 2021-09-15.
  10. C. Pita-Ruiz, Generalized Stirling Numbers I, arXiv:1803.05953v1 [math.CO].
  11. C. Pita-Ruiz, On a family of Euler type numbers and polynomials, Rend. Mat. Appl. (7), 44(2023), 1-26.
  12. C. Pita-Ruiz, On bi-variate poly-Bernoulli polynomials, Commun. Math., 31(1)(2023), 179-203.
  13. J. Worpitzky, Studien uber die Bernoullischen und Eulerschen Zahlen, J. Reine Angew. Math., 94(1883), 203-232.