Acknowledgement
I thank the anonymous referee for his/her careful reading of the original version of this work. The many details and observations he/she pointed out, certainly contributed to present this final version.
References
- L. Carlitz, Problem 795, Math. Mag., 44(1971), 107.
- G.-S. Cheon, A Note on the Bernoulli and Euler polynomials, Appl. Math. Lett., 16(3)(2003), 365-368. https://doi.org/10.1016/S0893-9659(03)80058-7
- L. Comtet, Advanced Combinatorics, D. Reidel Publishing Co., Dordrecht, 1974, xi+343 pp.
- K. Dilcher and C. Vignat, General convolution identities for Bernoulli and Euler polynomials, J. Math. Anal. Appl., 435(2)(2016), 1478-1498. https://doi.org/10.1016/j.jmaa.2015.11.006
- H. W. Gould, Explicit formulas for Bernoulli numbers, Amer. Math. Monthly, 79(1972), 44-51. https://doi.org/10.1080/00029890.1972.11992980
- B. N. Guo and F. Qi, Explicit formulae for computing Euler polynomials in terms of Stirling numbers of the second kind, J. Comput. Appl. Math., 272(2014), 251-257. https://doi.org/10.1016/j.cam.2014.05.018
- B. C. Kellner, Identities between polynomials related to Stirling and harmonic numbers, Integers, 14(2014), Paper No. A54, 22 pp.
- T. Komatsu, B. K. Patel and C. Pita-Ruiz, Several formulas for Bernoulli numbers and polynomials, Adv. Math. Commun., 17(3)(2023), 522-535. https://doi.org/10.3934/amc.2021006
- F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl and M. A. McClain, eds., NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/, Release 1.1.3 of 2021-09-15.
- C. Pita-Ruiz, Generalized Stirling Numbers I, arXiv:1803.05953v1 [math.CO].
- C. Pita-Ruiz, On a family of Euler type numbers and polynomials, Rend. Mat. Appl. (7), 44(2023), 1-26.
- C. Pita-Ruiz, On bi-variate poly-Bernoulli polynomials, Commun. Math., 31(1)(2023), 179-203.
- J. Worpitzky, Studien uber die Bernoullischen und Eulerschen Zahlen, J. Reine Angew. Math., 94(1883), 203-232.