• Title/Summary/Keyword: Space Convergence

Search Result 2,227, Processing Time 0.026 seconds

CONVERGENCE OF THE NEWTON METHOD FOR AUBIN CONTINUOUS MAPS

  • Argyros, Ioannis K.
    • East Asian mathematical journal
    • /
    • v.25 no.2
    • /
    • pp.153-157
    • /
    • 2009
  • Motivated by optimization considerations we revisit the work by Dontchev in [7] involving the convergence of Newton's method to a solution of a generalized equation in a Banach space setting. Using the same hypotheses and under the same computational cost we provide a finer convergence analysis for Newton's method by using more precise estimates.

SOME CONVERGENCE THEOREM FOR AND RANDOM VARIABLES IN A HILBERT SPACE WITH APPLICATION

  • Han, Kwang-Hee
    • Honam Mathematical Journal
    • /
    • v.36 no.3
    • /
    • pp.679-688
    • /
    • 2014
  • The notion of asymptotically negative dependence for collection of random variables is generalized to a Hilbert space and the almost sure convergence for these H-valued random variables is obtained. The result is also applied to a linear process generated by H-valued asymptotically negatively dependent random variables.

THE CONVERGENCE OF δ-FILTERS

  • Lee, Seung On;Oh, Ji Hyun;Yun, Sang Min
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.1
    • /
    • pp.35-43
    • /
    • 2011
  • In this paper we define the convergence of ${\delta}$-filters and study them. We show that ${\delta}$-filters on a Hausdorff space X converge at most one point in X. We also show that in a P-space X, ${\delta}$-filters on X converge at most one point in X if and only if X is a Hausdorff space.

Complete convergence for weighted sums of arrays of random elements

  • Sung, Soo-Hak
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.679-688
    • /
    • 1995
  • Let $(B, \left\$\mid$ \right\$\mid$)$ be a real separable Banach space. Let $(\Omega, F, P)$ denote a probability space. A random elements in B is a function from $\Omega$ into B which is $F$-measurable with respect to the Borel $\sigma$-field $B$(B) in B.

  • PDF

ON COVERING AND QUOTIENT MAPS FOR 𝓘𝒦-CONVERGENCE IN TOPOLOGICAL SPACES

  • Debajit Hazarika;Ankur Sharmah
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.267-280
    • /
    • 2023
  • In this article, we show that the family of all 𝓘𝒦-open subsets in a topological space forms a topology if 𝒦 is a maximal ideal. We introduce the notion of 𝓘𝒦-covering map and investigate some basic properties. The notion of quotient map is studied in the context of 𝓘𝒦-convergence and the relationship between 𝓘𝒦-continuity and 𝓘𝒦-quotient map is established. We show that for a maximal ideal 𝒦, the properties of continuity and preserving 𝓘𝒦-convergence of a function defined on X coincide if and only if X is an 𝓘𝒦-sequential space.

A study on feature points matching for 3D reconstruction using Column Space Fitting (CSF) (Column Space Fitting (CSF)을 이용한 3차원 복원을 위한 특징점 매칭에 대한 연구)

  • Oh, Jangseok;Hong, Hyunggil;Woo, Seongyong;Song, Suhwan;Seo, Kapho;Kim, Daehee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.07a
    • /
    • pp.389-390
    • /
    • 2018
  • 본 논문에서는 3차원 복원을 위한 특징점 추출 및 매칭에 대한 보다 정확한 방법을 제안한다. 이 방법은 컴퓨터 비전의 기본이 되는 분야로 복원뿐 만 아니라 SLAM과 같은 지도 작성 및 자율 운행에도 필요한 방법이다. 본 연구는 3차원 물체 복원을 위해서 사용하는 방법 중 하나인 Column space fitting(CSF)을 이용하여 turntable-image data에 적용하여 성능을 평가하여 정확성을 검증을 한다. 오늘날 3D scanner를 이용하여 물체를 3차원 모델을 획득하고 3D프린터를 이용하여 다양한 분야에 적용한다. 그러나 고가의 장비이기 때문에 접근성이 떨어진다. 본 연구는 영상들만을 가지고 기하학적 계산을 통해 3차원 모델을 획득한다. 본 연구결과는 기존의 방법인 KLT 알고리즘과 비교하여 RMSE의 값을 약 5배를 줄이는 성능 향상을 보인다.

  • PDF

수렴구조의 역사

  • 한용현
    • Journal for History of Mathematics
    • /
    • v.14 no.2
    • /
    • pp.13-20
    • /
    • 2001
  • The topological structure of a topological space is completely determined by the data of convergence of filters on the space. We study the origin of convergence structure in the setting of filters and nets and their ramifications.

  • PDF

SOME RESULTS ON CONVERGENCES IN FUZZY METRIC SPACES AND FUZZY NORMED SPACES

  • Cho, Kyugeun;Lee, Chongsung
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.185-199
    • /
    • 2020
  • In this paper, we introduce the definitions of sp-convergent sequence in fuzzy metric spaces and fuzzy normed spaces. We investigate relations of convergence, sp-convergence, s-convergence and st-convergence in fuzzy metric spaces and fuzzy normed spaces. We also study sp-convergence, s-convergence and st-convergence using the sub-sequence of convergent sequence in fuzzy metric spaces and fuzzy normed spaces. Stationary fuzzy normed spaces are defined and investigated. We finally define sp-closed sets, s-closed sets and st-closed sets in fuzzy metric spaces and fuzzy normed spaces and investigate relations of them.